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Abstract
In this paper, we present a framework for multiscale topology optimization of fluid-flow devices. The
objective is to minimize dissipated power, subject to a desired contact-area. The proposed strategy is
to design optimal microstructures in individual finite element cells, while simultaneously optimizing the
overall fluid flow. In particular, parameterized super-shapes are chosen here to represent microstructures
since they exhibit a wide range of permeability and contact area. To avoid repeated homogenization, a
finite set of these super-shapes are analyzed a priori, and a variational autoencoder (VAE) is trained
on their fluid constitutive properties (permeability), contact area, and shape parameters. The resulting
differentiable latent space is integrated with a coordinate neural network to carry out a global multi-
scale fluid flow optimization. The latent space enables the use of new microstructures that were not
present in the original data-set. The proposed method is illustrated using numerous examples in 2D.

Keywords: Topology Optimization, Multiscale, Stokes Flow, Variational Auto-encoders, Super-shapes

1 Introduction
In fluid-flow based topology optimization, the typ-
ical objective is to determine the path of least
resistance, i.e., least dissipation, within a design
domain; see fig. 1(a). When no other constraint is
imposed, the path of least resistance is a single con-
nected path [1] as illustrated in fig. 1(b). However,
when additional constraints are introduced, the
optimal flow-path is typically more complex, and
not necessarily a single connected path. One such
constraint is the desired fluid-solid contact area,

which plays a crucial role in various applications
such as bio-sensors for detecting tumor cells [2],
microfluidic devices for cell sorting [3–7], micro-
channel heat sinks [8–10], and other microfluidic
devices involving heat transfer and mass trans-
portation/mixing mechanisms [11, 12]. In these
applications, a minimum fluid-solid contact area is
critical for achieving desired performance and func-
tionality. For instance, in bio-sensors for detecting
tumor cells, an increased contact area between the
fluid and the sensor surface enhances the sensitiv-
ity and accuracy of the detection process. Similarly,
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in microfluidic devices for cell sorting, the effi-
ciency of cell capture and separation depends on
the contact area between the cells and the solid
surfaces. One approach for enhancing the con-
tact area is to employ arrays of micro-pillars, as
suggested in [13, 14], but this can result in a sub-
stantial increase in dissipated power [15, 16]. A
more powerful approach is to use multi-scale struc-
tures, illustrated in fig. 1(c), and the main focus
of this paper.
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?

?

?

(a) (c)(b)

Fig. 1: (a) Fluid-flow problem. (b) Single-scale
design. (c) Multi-scale design.

1.1 Single-Scale Fluid Topology
Optimization

In this section, we briefly review prior research
on fluid-flow topology optimization (TO). While
various approaches have been proposed [1], the
emphasis here is on density-based methods.

The field of fluid flow TO was initiated
by the seminal work of Borrvall and Petersson
[17]. In their pioneering research, they presented
an optimal flow layout that minimizes pressure
drop by employing the Stokes equation along
with the Brinkman-Darcy equations under low
Reynolds number conditions. Gersborg-Hansen et
al. [18] continued this work by presenting applica-
tions with low Reynolds numbers for microfluidic
problems and micro-electro-mechanical devices.
Guest and Prévost [19] introduced the method of
Darcy–Stokes finite elements to optimize creeping
fluid flows, producing 0–1 (void-solid) topologies
without artificial material regions.

A novel density-based approach for topology
optimization of Stokes flow was proposed in [20]
which addresses convergence issues using fractional-
order Sobolev spaces for density. Anisotropic mesh
adaptation is explored in [21] to improve the
description of solid domains in topology optimiza-
tion of flow problems. Furthermore, to address
the bottlenecks of body-fitted mesh evolution

method, reaction–diffusion equation-based fluid
topology optimization is explored in [22]. Addition-
ally, Wiker et al. [23] explored the use of viscosity
as a dependent parameter, providing examples
of channels in a tree-shaped structure for pure
Darcy problems and mixed Stokes–Darcy flow.
The field of fluid flow TO has also been extended
to three-phase interpolation models, considering
fluid permeability through porous media and
impenetrable inner walls using the solid isotropic
material with penalization (SIMP) interpolation
functions [24]. A Matlab implementation is pre-
sented in [25], demonstrating stable low-order
discretization of Stokes equations using polygonal
finite elements. Parallel computations have been
employed for large-scale 2D and 3D Stokes flow
problems [26]. In [27], a marker-and-cell method
is introduced for large-scale optimization on GPU,
utilizing a geometric multigrid preconditioner. A
performance-driven optimization of fluidic devices,
utilizing parametric boundary descriptions and a
differentiable Stokes flow solver is proposed in [28].
Furthermore, an anisotropic, differentiable con-
stitutive model integrating different phases and
boundary conditions within a Stokes model is pre-
sented in [29]. Lastly, a phase field approach is
introduced in [30] for shape and topology optimiza-
tion in Stokes flow, providing a well-posed problem
in a diffuse interface setting.

1.2 Multiscale Topology
Optimization

The methods discussed above result in a single-
scale design where all design features are of the
same length scale. As discussed earlier, for prob-
lems with additional constraints, one must resort
to multi-scale TO (MTO), where one designs
optimal microstructures in each finite-element
cell while simultaneously solving the global flow
problem [31]. Several MTO techniques have been
proposed for structural and thermal problems.
In [32, 33], the authors introduced techniques
aimed at finding designs with optimal constitu-
tive properties under structural and thermal loads.
However, these theoretically optimal designs often
lead to extremely small length scales, posing man-
ufacturing challenges [34–36]. Additionally, their
applicability to fluid problems remains unexplored.
A more common approach is to compute optimal
microstructures in each cell [31, 37, 38]. While

2



103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

offering broad design freedom and applicability to
various physical phenomena, including fluid flow
[31], these methods tend to be computationally
expensive [35] since one must carry out homog-
enization of the evolving microstructures during
each step of the optimization process [39].

Homogenization-based optimization can yield
disconnected multiscale designs [35]. The process
of creating connected multiscale structures from
these designs is referred to as de-homogenization
[40]. For example, [41, 42] utilized an inverse
design methodology to design microchannel fluid
flow networks featuring numerous outlets, employ-
ing Turing pattern dehomogenization. In [43],
dehomogenization based on bioinspired diffusion-
generated patterns converted orientation fields into
explicit fluid flow channels. Furthermore, in [44],
dehomogenization has been used for the inverse
design of fiber-reinforced composite with a com-
posite microstructure orientation approach [45].
Other examples of dehomogenization in multiscale
topology optimization include the design of shell-
infill structures [46], fluid microchannels [47] and
inverse design of microreactors [48].

1.3 Variations of MTO
To tackle the computational challenges of classic
MTO, other techniques have been proposed. For
example, graded-MTO (GMTO) [49–56] employs
graded variations of pre-selected microstructures.
This allows for pre-computation of microstruc-
tural properties through offline homogenization
before optimization [57, 58]. Machine learning has
been utilized to learn the local mechanical prop-
erties of multiscale configurations through offline
computation [59, 60]. GMTO has been used with
both single [61–63] and multiple microstructures
[57, 64]. One major limitation of GMTO is that
the microstructural shape must be pre-selected
prior to optimization. Thus, new microstructure
shapes cannot be discovered during optimization.
Moreover, these pre-selected shapes are typically
graded using a single parameter, which further
restricts the variety of microstructures that are
generated. To address the aforementioned chal-
lenge, a microstructure blending-based multiscale
approach has been proposed in [65], which can
generate new classes of microstructures. However,
the approach requires supplementary parameters

beyond the conventional shape parameters. More-
over, the blending process requires additional steps
to impose bounds on the blending operation, to pre-
vent any distorted or invalid shapes in the resulting
microstructures. In [64], a set of microstructures
were pre-selected, and their size/orientation was
optimized. While this slightly increased the design
space, it is still limiting and leads to undesirable
mixing of microstructures within each cell.

1.4 Contributions
In section 2, we propose an alternate and effi-
cient MTO method that uses variational auto-
encoder (VAE) in combination with super-shapes
to compute fluid designs with low dissipation, and
desired contact area. In section 3, we demonstrate,
using numerical experiments, that this significantly
increases in design space. Conclusions and future
work are discussed in section 4.

2 Proposed Method
2.1 Assumptions and Strategy
Consider a design domain Ω0 with prescribed
flow boundary conditions as illustrated earlier in
fig. 1(a). The objective is to compute a multiscale
design that minimizes the dissipated power subject
to a total contact-area (i.e., perimeter in 2D) con-
straint. We will assume that it is a low-Reynolds
flow, and the fluid is incompressible, i.e., the fluid
is governed by Stokes equation:

−2∇.[µϵ(u)] + C−1
eff .u +∇p = 0 in Ω0 (1a)

∇.u = 0 in Ω0 (1b)
u = G over ∂Ω0 (1c)

where u and p are the velocity vector and pressure
of the fluid, ϵ(u) = (∇u + ∇T u)/2 represents the
rate-of-strain tensor, C−1

eff denotes the inverse of
effective permeability tensor [66, 67] which penal-
izes the fluid flow in the design domain (for more
details see section 2.3). The viscosity µ and mass
density are assumed to be unity; G is the velocity
field imposed on ∂Ω0.

The overall strategy is to discretize the domain
into finite element cells, and dynamically create
optimal microstructures in each cell from a single
family of parameterized super-shapes, discussed
next.

3
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Fig. 2: A variety of microstructure generated using supershape parameters.

2.2 Super-Shapes
Super-shapes, also known as Gielis curves, were
introduced by Gielis in 2003 [68] as an exten-
sion of super-quadrics. Supershapes have been
extended to 3D, the approach involves the spher-
ical product of two super-shapes [69], similar to
the method employed for super-quadrics as elab-
orated in [70]. Unlike super-quadrics that utilize
only two parameters, super-shapes incorporate six
parameters namely, size: a and b, order of rota-
tional symmetry: m, and curvature: n1, n2, and
n3, where all numbers are assumed to be positive
real. Using these six parameters, the super-shape
boundary is defined by the set of points:

(x, y) =
(
r(α) cos(α), r(α) sin(α)

)
; 0 ≤ α ≤ 2π

(2)
where,

r(α) =
[∣∣∣∣1

a
cos

(mα

4

)∣∣∣∣n2

+
∣∣∣∣1
b

sin
(mα

4

)∣∣∣∣n3]− 1
n1

(3)
By varying these six parameters, a variety of

shapes can be obtained as illustrated in fig. 2.
In addition to varying these parameters, we

allow the shapes be oriented with respect to the
x-axis, using an orientation parameter θ; see fig. 3.

θ = 𝜋/4 θ = 𝜋/2   a = 0.5,  b = 0.5,  m = 2, 
  =  =  = 0.6,  θ = 0

Fig. 3: A fish-shaped microstructure oriented at
various angles.

The proposed strategy is to find optimal super-
shape parameters and orientation, within each cell
that minimize the overall dissipated power, subject
to a contact-area. A naive approach would entail
computing the homogenized constitutive tensors of
evolving super-shapes in each cell, during each step
of the optimization process. This is once again com-
putationally intractable. Instead, we propose an
off-line strategy where a finite set of super-shapes
are analyzed, and their characteristics are captured
using a VAE [71] (see section 2.4). The resulting
decoder (and latent space) is then used for efficient
multi-scale optimization. In the remaining sections,
the proposed strategy is discussed in detail.

2.3 Offline Computation
We now describe the process for computing the
permeability of any super-shape microstructure.
Consider a generic super-shape with a given set of
parameters M = {a, b, m, n1, n2, n3} within a unit
cell (i.e., l = 1). The contact-area (i.e., perime-
ter) and volume fraction are first computed by
discretizing the boundary and generating the super-
shape density field using the shapely library [72],
as illustrated in fig. 4(b) and fig. 4(c) respectively.
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Fig. 4: Generation of super-shape density field
using shapely library

To compute the 2×2 permeability tensor C, the
domain is discretized into a mesh of 150 × 150 ele-
ments. Then, two Stokes flow problems are solved,
subject to unit body forces fx = 1 and fy = 1,
as illustrated in fig. 5. The boundary conditions
involve coupling boundaries 1 and 3 through peri-
odic conditions for velocity and pressure, as well
as coupling boundaries 2 and 4 similarly; see [73].
The velocities obtained from solving the problem
with fx = 1 are denoted as u0(x, y) and v0(x, y),
while those obtained from solving the problem
with fy = 1 are denoted as u1(x, y) and v1(x, y).
Since u1(x, y) and v0(x, y) are nearly orthogonal
to the bulk flow directions, the off-diagonal terms
of the permeability tensor are three orders of mag-
nitude smaller than the diagonal terms and can be
neglected [74]. Thus, the permeability tensor C is
computed as follows [73, 75, 76]:

C =
[
C00 0
0 C11

]
= 1
|V |


∫
V

u0dV 0

0
∫
V

v1dV

 (4)

fx

Solid
Fluid

Homogenization

fy
1 13 3

2

4 4

2

C00
C110
0

Fig. 5: Offline homogenization.

where the volume V of the unit cell is unity.
Note that the orientation is taken into account

through the following tensor operation to deter-
mine the transformed permeability tensor [75]:

Ctrans =[
cos θ − sin θ
sin θ cos θ

] [
C00 0
0 C11

] [
cos θ − sin θ
sin θ cos θ

]T

(5)
As the effective permeability Ceff in equation

eq. (1) is scale-dependent, one can scale Ctrans

according to the unit-cell size l of the problem,
expressed as Ceff = l2Ctrans.

For numerical homogenization, a Brinkman
penalization of zero is applied for the fluid phase
and 106 for the solid phase. For further details
on the numerical homogenization methodology
employed in this study, please see [73]. A random
set of 7000 samples of super-shapes are analyzed
using the above process, where parameter instances
are generated using a uniform random distribution
[77] as follows: 0.05 ≤ a, b ≤ 0.75, 1 ≤ m ≤ 22 and
0.5 ≤ n1, n2, n3 ≤ 10. The results from the offline
computation are then analyzed using variational
autoencoders, discussed next.

2.4 Variational Auto-Encoders
Variational auto-encoders (VAEs) are a type of gen-
erative model that leverages probabilistic encoding
and decoding techniques to compress input data
into a lower-dimensional latent space [71, 78, 79].
One of the key advantages of VAEs, as opposed to
other encoding methods, is their ability to generate
new samples that resemble the original input data
[79]. For instance, VAEs have been successfully
employed to generate novel microstructures from
image databases [80]. Another important feature
of VAEs is the creation of continuous and differen-
tiable latent space. This allows for gradient-based
optimization, enabling efficient exploration of the
latent space. This is particularly valuable in appli-
cations such as reliability-based TO [81]. Finally,
unlike linear dimensionality reduction techniques
such as principal component analysis (PCA), VAEs
can learn complex non-linear relationships between
the input and the reduced dimensional space [82].

The proposed VAE architecture, depicted in
fig. 6, consists of several essential components:

1. Firstly, the input Ψ is ten-dimensional rep-
resenting six shape parameters M , two per-
meability components (C00 and C11), contact
area Γ and volume fraction vf .

5
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2. The encoder E, following along [83], is a fully-
connected network consisting of two hidden
layers, each containing 600 neurons with a
LeakyReLU activation functions [84].

3. The proposed VAE uses a two-dimensional
latent space (z1 and z2).

4. Additionally, a decoder D is constructed
with two hidden layers, each containing 600
neurons.

5. The output consists of the same ten properties:
shape parameters M̂ , permeability compo-
nents Ĉ ≡ (Ĉ00 and Ĉ11), contact area Γ̂ and
volume fraction v̂f . They can be combined as
Ψ̂ ≡ (â, b̂, m̂, n̂1, n̂2, n̂3, Ĉ00, Ĉ11, Γ̂, v̂f ).

Note that the reconstruction will not be exact.
One objective is to minimize the difference between
the output and input [85]. This involves opti-
mizing the weights associated with the encoder
and decoder. Additionally, the latent space is
constrained to approximate a Gaussian distribu-
tion N (0, I) through a KL divergence loss term
expressed as KL(z||N ) [71]. This ensures that sim-
ilar shapes are clustered together in the latent
space. Thus, the overall VAE loss function can be
formulated as:

Lv = ||Ψ− Ψ̂||2 + βKL(z||N ) (6)

Here, β is set to 10−7 [85]. To achieve a stable
convergence, the geometric parameters, contact
area, and volume fraction are normalized linearly
between 0 and 1, while the permeability compo-
nents are scaled logarithmically due to significant
variation in magnitude.

2.5 Latent Space
Once the latent space has been constructed, the
trained decoder D∗ can be used to generate
super-shape parameters and properties via Ψ̂ =
D∗(z1, z2) for all points within the latent space.
The generated latent space has the following
features:

1. Generation of new microstructures:
Although the data set used to train the
decoder is discrete, the resulting latent space
is continuous. This continuous representa-
tion facilitates a meaningful exploration of
microstructure configurations throughout the
latent space. For example in fig. 7, while A,
B, E, and F depict points present in the data

set, points C, D, G, and H are generated
by the trained decoder, with correspond-
ing microstructures. The percentage error
between the actual microstructure properties
obtained from numerical homogenization and
the reconstructed data for points both within
(A, B, E, and F) and outside (C, D, G, and
H) the training dataset are summarized in
table 1. We found that the percentage errors
for both sets of points are comparable.

2. Differentiable Latent Space: The latent
space is differentiable in that derivatives
such as ∂Ψ̂

∂z1
, can be computed analyti-

cally using back-propagation. This enables
gradient-based optimization.

Points ∆C00% ∆C11% ∆vf % ∆Γ%
A 0.42 3.70 0.232 1.20
B 1.84 3.63 0.291 3.30
C 3.50 2.80 0.20 0.76
D 1.80 3.60 1.60 2.60
E 0.43 3.70 0.60 2.03
F 0.122 4.05 0.947 1.24
G 1.83 3.63 1.64 2.65
H 2.05 0.322 2.38 2.63

Table 1: Prediction accuracy for points in
fig. 7

2.6 Global Fluid Flow Analysis
We are now ready to address global fluid flow
analysis. Here, a quadrilateral Q2-Q1 (quadratic
velocity/linear pressure) element belonging to the
class of the Taylor-Hood elements is used. The
elemental stiffness matrix Ke and degrees of free-
dom vector Se for the governing equation (see
section 2.1) are given by (see [25] for details):

Ke =

Ae Be 0
BT

e 0 he

0 hT
e 0

 , Se =

Ue

Pe

λ

 (7)

where

Ae = Aµ
e + C−1

eff,eAα
e (8a)

[Aµ
e ]ij =

∫
Ωe

2µϵ(Ni) : ϵ(Nj)dΩ (8b)

[Aα
e ]ij =

∫
Ωe

NiNjdΩ (8c)
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Fig. 6: Proposed VAE network.
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Fig. 7: The latent space density distribution and scattered plots in the insets reveal both microstructures
existing in the dataset and new microstructures generated by the VAE that are not originally present in
the dataset.

[Be]ij =
∫

Ωe

Lj∇.NidΩ (8d)

[he]i =
∫

Ωe

LidΩ (8e)

Here, Ni and Li are the velocity and pressure
basis functions, Ue and Pe represent elemental
velocity and pressure degrees of freedom respec-
tively and Ceff,e is the design dependent effective
element permeability matrix (section 2.3). and ϵ(·)

is defined in section 2.1. To ensure a unique defi-
nition of the pressure field, a zero mean condition
(hT

e P = 0) is imposed by incorporating a Lagrange
multiplier, denoted as λ (for details see [25, 86]).
The individual elemental Ke and Se matrices are
assembled to construct the global stiffness matrix
K and degrees of vector S respectively. We then
solve the equation KS = f , wherein the vec-
tor f represents the boundary conditions applied.
This solution determines the unknown degrees of
freedom in S.
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2.7 Design Variables, Objective and
Constraints

Finally, the optimization framework comprises of
the following:

Design Variables: The design variables asso-
ciated with each element are denoted by ζe =
{z1,e, z2,e, θe}, where z1,e and z2,e are the two
latent space variables, and θe is the orientation
of the super-shape. The values z1 and z2 are
constrained to lie within [−3, 3], and the orien-
tation parameter is constrained as 0 ≤ θ ≤ 2π.
The entire set of design variables is denoted by
ζ = {ζ1, ζ2, ...., ζNe}.

Objective: The objective is to minimize the
dissipated power given by [17, 25]:

J(ζ) =
Ne∑
e=1

1
2UT

e [Aµ
e + Aα

e C−1
eff,e]Ue (9)

Contact-Area Constraint: The contact area
Γ̂e of each microstructure is reconstructed using
the decoder, and the following global constraint is
imposed:

gΓ(ζ) ≡ 1−

Ne∑
e=1

Γ̂e

Γmin
≤ 0 (10)

where Γmin is the lower bound on the contact
area and Ne represents the number of elements in
the design domain.

Volume Constraint: Instead of imposing a
contact area constraint, one can impose a volume
constraint:

gV (ζ) ≡

Ne∑
e=1

v̂f,e

Nevmax
− 1 ≤ 0 (11)

where, v̂f,e is the fluid volume fraction, and vmax

is the upper bound on the volume fraction.

2.8 Multiscale Optimization
Problem

Consequently, one can pose the multiscale problem
in a finite-element setting as:

min
ζ={ζ1,ζ2,...ζNe }

J(ζ) (12a)

subject to K(ζ)S = f (12b)
gΓ(ζ) ≤ 0 (12c)

(or) gV (ζ) ≤ 0 (12d)
with −3 ≤ ze,0, ze,1 ≤ 3 , ∀e (12e)

0 ≤ θe ≤ 2π , ∀e (12f)

To solve the above optimization problem, opti-
mization techniques such as the method of moving
asymptotes [87] or optimality criteria [88] can
be used. However, we use neural networks (NN)
for optimization [89] due to several advantages.
Most NN implementations support automatic dif-
ferentiation [90], which enables seamless gradient
calculations. They can also capture highly non-
linear behavior with very few design variables.

2.9 Optimization using a Neural
Network

The proposed neural-network (NN) architecture
for global optimization is illustrated in fig. 8, and
it consists of the following entities:

1. Input Layer: The input to the NN are points
x ∈ R2 within the domain Ω0. Although these
points can be arbitrary, they correspond here
to the center of the elements.

2. Fourier Projection: The sampled points
from the Euclidean domain are directed
through a frequency space, associated with a
frequency range F . Prior research [91, 92] indi-
cates that implicit coordinate-based neural
networks are biased to lower frequency com-
ponents of the target signal. To address this
issue and speed up convergence, a Fourier pro-
jection layer is integrated before the standard
activation layers [93].

3. Hidden Layers: The hidden layers consist
of a series of fully connected LeakyReLU
activated neurons, LeakyReLU is a differen-
tiable function, as opposed to ReLU, and is
therefore preferred in this work [94]. In par-
ticular, the neural network used here consists
of two hidden layers, each activated with the
LeakyReLU function and each layer has 20
neurons.

4. Output Layer: The output layer consists of 3
neurons corresponding the design variables for
each element ζe = {z1(x), z2(x), θ(x)}. The
output neurons are activated by a Sigmoid

8
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Fig. 8: Topology optimization network.

function σ(·). The neurons associated with
the latent space variables are scaled as zi ←
−3 + 6σ(zi) to retrieve values in the range
of a standard Gaussian Normal distribution.
Further, the output neuron associated with
the orientation is scaled as θ ← 2πσ(θ). Thus,
the box constraints in eq. (12e) and eq. (12f)
are not needed.

5. NN Design Variables: The weights and bias
associated with the NN, denoted by the w,
now become the primary design variables, i.e.,
we have z1(x; w), z2(x; w) and θ(x; w). The
weights in the network are initialized using
Xavier weight initialization [95] with a seed
value of 77.

6. Optimizer: The Adam optimizer is used with
a learning rate of 4 · 10−3. The optimization
process is set to run for a maximum of 300
iterations (epochs). To ensure convergence,
the optimization monitors the change in loss
(∆L∗

c) (see eq. (14)) with a threshold of 10−5.
Thus, eq. (12) reduces to:

minimize
w

J(w) (13a)

subject to K(w)S = f (13b)

gΓ(w) ≡ 1−

Ne∑
e=1

Γ̂e(w)

Γmin
≤ 0

(13c)

(or) gV (w) ≡

Ne∑
e=1

(v̂f,e(w))

Nevmax
− 1 ≤ 0

(13d)

Since neural networks are designed to minimize
an unconstrained loss function, we convert the con-
strained minimization problem into a loss function
minimization by employing the penalty scheme

[96]. Specifically, the loss function is defined as:

LT (w) = J(w)
J0 + γg(w)2 (14)

where the parameter γ is updated during each
iteration, making the enforcement of the constraint
(g) stricter as the optimization progresses. The
constraint penalty in the current framework starts
with an initial value of γ = 1. and is incremented
by ∆γ = 0.1 after every epoch. J0 represents the
initial iteration’s objective value, which serves as
a scaling factor for the objective function.

Thus, the overall framework is illustrated in
fig. 9.

2.10 Sensitivity Analysis
A critical ingredient in gradient-based optimization
is the sensitivity, i.e., derivative, of the objective
and constraint(s) with respect to the optimization
parameters. Typically the sensitivity analysis is
carried out manually. For example, the derivatives
of the objective function are typically expressed as
follows where each term is computed manually:

∂LT

∂w
=

[∂LT

∂J

∂J

∂u

∂u

∂K

(∂K

∂Ĉ

∂Ĉ

∂w∗
D

∂w∗
D

∂z

∂z

∂w
+ ∂K

∂θ

∂θ

∂w

)
+ ∂LT

∂gΓ

∂gΓ

∂Γ̂
∂Γ̂

∂w∗
D

∂w∗
D

∂z

∂z

∂w

]
(15)

This can be laborious and error-prone, espe-
cially for non-trivial objectives. Here, by expressing
all our computations including computing the per-
meability tensors, stiffness matrix, FEA, objectives,
and constraints in PyTorch [90], we use the NN’s
automatic differentiation (AD) capabilities to com-
pletely automate this step [97]. In other words, only
the forward expressions need to be defined, and
all required derivatives are computed to machine
precision by PyTorch computing library. PyTorch
automatically handles computing the gradients
by constructing a computational graph, with the
weights of the NN serving as the leaf tensors [98].
This graph encompasses all the operations depicted
in the flow chart in fig. 9. By invoking the gradient
function with respect to the loss, PyTorch effec-
tively calculates the sensitivities eq. (15), including
the adjoint computation ∂u

∂K .
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Fig. 9: Optimization flowchart.

2.11 Algorithms
The three algorithms used here are summarized in
algorithm 1, algorithm 2, and algorithm 3. In the
first algorithm, the primary objective is to generate
a set of microstructures and their properties Ψ.

Algorithm 1 Generate Microstructure properties
data-set

1: procedure DataGen
2: M → Γ, vf , C00, C11 ▷ Offline

Computation section 2.3
3: M , Γ, vf , C00, C11 → Ψ ▷ Data-set

creation
4: end procedure ▷ Output: Microstructure

data-set

In algorithm 2, using Ψ, the VAE is trained to
produce a lower-dimensional latent space.

Algorithm 2 Encode Microstructure properties
1: procedure MstrEncode(Ψ, E, D) ▷ Input:

Training data, encoder and decoder
2: epoch = 0 ▷ iteration counter
3: repeat ▷ VAE training
4: E(Ψ)→ z ▷ Forward prop.encoder
5: D(z)→ Ψ̂ ▷ Forward prop.decoder
6: {Ψ, Ψ̂, z} → LV ▷ VAE loss eq. (6)
7: w,∇LV → w ▷ Adam optimizer step;

update weights
8: epoch + +
9: until ||∆LV || < ∆L̂V or epoch <

max_epoch ▷ check for convergence
10: end procedure ▷ Output: Trained Decoder

Once the training is complete, the encoder E
is discarded, and the decoder D is retained. The

main optimization algorithm is summarized in algo-
rithm 3. First, the domain Ω0 is discretized for
finite element analysis, and the stiffness matrix
components are computed (line 3). The mesh is
sampled at the center of each element (line 4); these
serve as inputs to the NN. The penalty parameter
γ and NN weights w are initialized [95] (line 5).

In the main iteration, the design variables ζ
are computed using the NN (line 7). Then the
latent space variables serve as input to the trained
decoder D∗, followed by the computation of the
microstructural geometric properties M̂ , perme-
ability components Ĉ and contact area Γ̂ (or,
alternately, the volume fraction) for each element
(line 8). The reconstructed permeability compo-
nents from the decoder along with the orientation
from the NN are used to calculate the effective
permeability tensor (line 9). The effective perme-
ability is used to construct the stiffness matrix
and to solve for the velocity and pressure (lines
10-11). Then the objective and contact area (or
volume) constraint are computed (lines 12 - 13),
leading to the loss function (line 14). The sensitiv-
ities are computed in an automated fashion (line
15). The weights w are then updated using the
Adam optimization scheme (line 16). Finally, the
penalty parameters are updated (line 17). The pro-
cess is repeated until termination, i.e., until the
relative change in loss is below a certain threshold
or the iterations exceed a maximum value.

3 Numerical Experiments
In this section, we conduct several experiments to
demonstrate the proposed framework. All exper-
iments were conducted on a MacBook M2 Air,
using the PyTorch library [90] in Python. Although
some hyperparameter tuning was necessary ini-
tially (specifically, learning rate, neural network
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Algorithm 3 Fluid Topology Optimization
1: procedure TopOpt(Ω0, BC, Γmin, D∗) ▷

Input: Design domain, boundary conditions,
area constraint, and trained decoder

2: Ω0 → Ω0
h section 2.6

3: Ω0
h → Aµ, Aα, B, h eq. (8)

4: x = {xe, ye}e∈Ω0
h

x ∈ Rne×2

5: epoch = 0; γ = γ0; w = w0 ▷ initialization
6: repeat ▷ optimization (Training)
7: NN(x; w)→ z(x), θ(x) ▷ section 2.9
8: D∗(z(x; w))→ M̂(x), Ĉ ▷ fwd prop
9: Ĉ00(x), Ĉ11(x), θ(x)→ Ceff (x) ▷

eq. (5)
10: Ceff (x)→K, f eq. (7)
11: K, f → S ▷ solve eq. (13b)
12: K, S → J ▷ Objective, eq. (13a)
13: Γ̂, Γmin → gΓ eq. (10)
14: J, gΓ → L ▷ loss from eq. (14)
15: AD(L, w)→ ∇L ▷ sensitivity analysis
16: w,∇L→ w ▷ Adam optimizer step
17: γ + ∆γ → γ ▷ increment penalty
18: epoch + +
19: until ||∆L|| < ∆L∗

c or epoch <
max_epoch ▷ check for convergence

20: end procedure

configuration, and update schemes), we employed
the same values across all experiments.

3.1 Ideal Microstructure Selection
In this experiment, our objective is to identify
a microstructure with a solid volume fraction of
approximately 0.25, with the highest permeabil-
ity. Towards this end, the latent space is uniformly
sampled at 200 × 200 points using the decoder.
Microstructures with a solid volume fraction within
the range 0.25±0.001 are then identified; see fig. 10.
Among these, the microstructure with the high-
est value of the trace of permeability tensor, i.e.,
highest Ĉ00 + Ĉ11, is selected [99]. The chosen
microstructure has the following shape parameters
M∗ = {a = 0.7158, b = 0.3757, m = 0.6039, n1 =
1.4787, n2 = 0.4349, n3 = 0.5857}. As one can
observe in fig. 10, it exhibits a fish-like shape. This
particular microstructure will be used in the next
numerical experiment.

<latexit sha1_base64="8V/7qtRkX4SCjv23zFWMYg+GhkE=">AAACAnicbVC7SgNBFL0bX3F9RS1tBoNgFXZF1DJgoWVE84BkCbOzs8mQmZ1lZlaIIZ2trf6Dndj6I/6CX+Ek2cIkHrhwOOdeOPeEKWfaeN63U1hZXVvfKG66W9s7u3ul/YOGlpkitE4kl6oVYk05S2jdMMNpK1UUi5DTZji4nvjNR6o0k8mDGaY0ELiXsJgRbKx0/9T1u6WyV/GmQMvEz0kZctS6pZ9OJEkmaGIIx1q3fS81wQgrwwinY7eTaZpiMsA92rY0wYLqYDSNOkYnVolQLJWdxKCp+vdihIXWQxHaTYFNXy96E/FfLxRWRqHkkTufwMRXwYglaWZoQmYB4owjI9GkDxQxRYnhQ0swUcz+gEgfK0yMbc215fiLVSyTxlnFv6ic352Xqzd5TUU4gmM4BR8uoQq3UIM6EOjBC7zCm/PsvDsfzudsteDkN4cwB+frFz/VlpY=</latexit>z1
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!𝐶!!+ !𝐶""

Latent coordinates (2.879, 0.437)

Fig. 10: Latent space coordinates of microstruc-
tures with solid volume fraction of approximately
0.25.

3.2 Bent-Pipe
For the remainder of the paper, we set the inlet
velocity to 1, the mass density to 1, and viscosity
to 1 [25, 100].

We now consider the bent-pipe problem pro-
posed in [31], and illustrated in fig. 11(a). The
inlet and outlet boundaries are subject to parabolic
velocity conditions, of unit magnitude, and the
domain is discretized into 20 × 60 elements. In
[31], a two-scale topology optimization was car-
ried out to minimize the dissipated power, with a
constraint that the optimal microstructure must
occupy exactly 25 percent of each unit cell. The
reported topology is illustrated in fig. 11(b); the
final dissipated power was not reported. However,
as noted in [31], the computed microstructures
resemble the fish-body. In [64] a GMTO approach
was employed with pre-defined microstructures to
achieve a similar design as depicted in fig. 11(c);
the dissipated power was reported to be 16.6. Here
we use the microstructure selected in the previ-
ous experiment to occupy each unit cell. Only the
orientation of the microstructure in each cell is
optimized. The resulting design is illustrated in
fig. 11(d) with the final dissipated power of 15.1.
This experiment highlights that super-shapes sam-
pled via the decoder can generate high-performing
microstructural designs.

3.3 Microstructure Variation
We continue with the previous experiment, but we
will now allow the shape and size of microstruc-
tures to vary across the domain. A global volume
constraint of 0.75 is imposed instead of a unit-
cell volume constraint. The resulting design is
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Fig. 11: Validation: (a) Problem definition. (b) Solution reported in [31]. (c) Solution reported in [64].
(d) Topology generated via the proposed method.

illustrated in fig. 12a with a dissipated power of
9.61, i.e., the performance improves with increased
design space, as expected. The contact area for
this particular design happens to be 75.69.

Finally, instead of imposing a volume con-
straint, we impose a contact area constraint of
75.69, and optimize the design. The final design
is illustrated in fig. 12b, with a dissipated power
of 7.56, i.e., further improvement in performance
is achieved for the same contact area. The pres-
ence of small solid islands can be attributed to the
absence of penalization in our algorithm.

Obj: 9.61 Obj: 7.56

(a) (b)

Fig. 12: Optimized design with microstructure
variation with: (a) volume constraint, and (b) con-
tact area constraint.

Note that the dissipated power of 7.56 and
contact area of 75.69 for the design in fig. 12b
are computed using the decoder. For validation,
we re-computed the true values using a global

FEA/homogenization of the final design. The dissi-
pated power was found to be 7.87 and the contact
area was 78.49, i.e., the decoder-reconstruction
errors are relatively small.

3.4 Convergence
In this experiment, we demonstrate the typical
convergence of the proposed algorithm using a
diffuser problem, as shown in Figure fig. 13(a). The
maximum inlet velocity imposed is 1 unit, and the
outlet velocity is 3 units. The desired contact area
was set to 60. The convergence of the dissipated
power, contact area, and the evolving topologies
are illustrated in fig. 13(b). We observed a stable
convergence using the simple penalty formulation
and Adam optimizer. Similar convergence behavior
was observed for other examples as well.
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Fig. 13: Convergence of dissipated power and
topologies for a diffuser problem. Topologies are
illustrated at the 0th, 20th, 100th, and 300th (final)
iterations.

3.5 Pareto trade-off
Understanding the trade-off between the objective
(dissipated power) and constraint (contact area)
through exploration of the Pareto-front is crucial
in making informed design choices. In this study,
we considered the diffuser problem in fig. 13(a),
using the entire design space of microstructures.
We computed the optimal topologies for different
contact area constraints. Figure 14 illustrates that
dissipated power increases with increasing contact
area, as expected.

Fig. 14: Pareto curve of dissipated power against
contact area.

Once again, to determine the accuracy of
decoder-reconstruction, we considered the design
at the left-bottom corner in fig. 14. For this design,
and using the values predicted by the decoder
we obtain a dissipated power of 22.13 and a con-
tact area of 50. Further, we reconstructed the
microstructures using the shape parameters pre-
dicted by the decoder. This is then used to compute
the actual homogenized matrices. Performing an
analysis using these values, we obtain a dissipated
power of 22.72 and a contact area of 51.08. This
corresponds to an error of 2.6% and 2.9% for the
dissipated power and contact area respectively. In
addition, for a contact area constraint 60, we com-
pare the velocity magnitude obtained through a
full-scale fluid flow simulation using Ansys [101]
(see fig. 15(a)), versus the proposed framework
(see fig. 15(b)). The maximum velocity magnitude
obtained using Ansys is 2.87, whereas using the
proposed method results in a value of 2.81.

(a) (b)

Fig. 15: Velocity magnitude plot of diffuser prob-
lem defined in fig. 13(a): (a) using Ansys and (b)
proposed homogenization approach.

3.6 Computational cost
One of the central hypotheses of this paper is
that the proposed offline decoder-based frame-
work offers a significant computational advantage

13



664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

over concurrent homogenization-based optimiza-
tion. Here, we report the computational costs to
validate this claim.

The offline homogenization and data-
generation of 7000 microstructures (algorithm 1)
required 164 minutes, while the VAE training
(algorithm 2) required 90 minutes, i.e., the total
one-time overhead is around 250 minutes. The
optimization of the bent-pipe (using a grid size of
20 × 60) took 32 minutes (300 iterations), while
the optimization of the diffuser (using a grid size
of 15× 15) took 1.5 minutes (300 iterations).

We now consider a hypothetical scenario of
concurrent homogenization. From the above data,
observe that the time required for each homog-
enization is 164/7000, i.e., 1.4 seconds. Now for
the concurrent homogenization of the bent-pipe,
one must carry out homogenization over each
cell within the grid of 20 × 60 over 300 itera-
tions, the expected optimization time is at least
1.4× 1200× 300/60, i.e., 8400 minutes. Similarly,
for the diffuser, the expected optimization time
is at least 1.4× 225× 300/60, i.e., 1575 minutes.
Thus, the proposed offline decoder-based method
is computationally far superior.

3.7 Fabrication
To demonstrate the manufacturability of the
designs produced by our framework, we consider
a design domain with boundary conditions, as
depicted in fig. 16 (a). In this example, we maintain
a 1 : 1 ratio and a 3 : 1 ratio between the magni-
tude of the outlet velocity profiles and the inlet
velocity profile. Additionally, we enforce a contact
area constraint of 70, resulting in the design show-
cased in fig. 16 (b). To ensure that these designs
can be manufactured successfully, we impose a
minimum area constraint on each microstructure.
One can also post-process the obtained design to
remove microstructures with small volume frac-
tions (as can be seen in fig. 13(b)). The final 3D
printed part is illustrated in fig. 16 (c).

(b)

1

(a)

1/
8

1/
8

1/
2

(c)

Fig. 16: (a) Design domain with boundary condi-
tions, (b) optimized design, (c) 3d printed design

4 Conclusion
In this paper, we presented a novel multi-scale fluid
flow topology optimization framework using super-
shape microstructures. An offline homogenization,
along with the training of a VAE was used to gen-
erate a continuous and differentiable latent space
of microstructural properties. This was followed by
global optimization, where the dissipated power
was minimized subject to contact area (or volume)
constraint.

The numerical results demonstrate that the
proposed method is computationally far superior
to concurrent homogenization, with minimal loss in
accuracy. Furthermore, super-shapes increase the
design space, yielding superior design compared
to pre-defined microstructures.

Future research includes extending the frame-
work to (1) high Reynolds flow, (2) thermo-fluid
applications, where the contact area is determined
indirectly via heat transfer, and (3) structural
applications where microstructures with a genus
greater than zero are desirable, and connectivity
is also critical. Experimental validation, extension
to 3D, and imposition of additional manufacturing
constraints are also desirable.
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Replication of Results The Python code
is available at github.com/UW-ERSL/TOMAS.
An implementation can also be found in the
supplementary section of the paper.
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