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Abstract5

Tangled (non-convex) elements, i.e. elements with negative Jacobian determinant, can lead to erroneous6

results in the standard finite element method (FEM). Constructing tangle-free, well-structured meshes for7

complex geometries is often impossible. Hence there is a need to explore analysis methods that can directly8

handle such tangled meshes.9

In this paper, we propose the isoparametric tangled finite element method (i-TFEM) for free and forced

vibration problems over tangled meshes. By employing piece-wise invertible mapping, a variational formu-

lation is derived, leading to a simple modification of the standard FEM stiffness and mass matrices with

the incorporation of additional compatibility constraints. Moreover, i-TFEM reduces to standard FEM

for non-tangled (regular) meshes. The proposed method is implemented for three types of elements: 4-node

quadrilateral, 9-node quadrilateral, and 8-node hexahedral elements. The numerical results demonstrate that

i-TFEM is able to consistently handle general tangled (non-convex) elements, enabling convenient meshing

for complex geometries.

Keywords: Tangled finite element method (i-TFEM), Elastodynamics, Tangled Mesh, Negative Jacobian,10

Non-convex elements, Mixed finite element, Algebraic constraints, Generalized Eigen-value11

1. Introduction12

Finite element method (FEM) is a widely used numerical technique to study the dynamic response of the13

structures. Despite numerous advances in the FEM, a major challenge which remains is the mesh generation14

for complex geometries, which can be excessively time-consuming, accounting for over 80% of the overall15

analysis time [1]. This challenge arises due to the strict topological and geometric requirements that must16

be satisfied by the mesh: (1) the mesh must be tangle-free, (2) the elements must exhibit high quality, (3)17

the mesh must conform to the geometry, and (4) must be well-structured. Meeting all these constraints is a18

non-trivial task.19

The first requirement, tangle-free elements, necessitates that the Jacobian determinant remains positive20

throughout the entire mesh. Fig. 1a and Fig. 1b illustrate examples of tangled meshes with 8-node hexahedral21

and 9-node quadrilateral elements respectively. If a mesh contains even a single tangled element, it is22

considered invalid or unacceptable for FEM. To quote [2]: “Because tangled meshes generate physically23
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invalid solutions, it is imperative that such meshes are untangled”.1

(a)

(b)

Figure 1: (a) Tangled mesh with 8-node hexahedral elements; the mesh has been provided in [3]. (b) Tangled mesh with 9-node

quadrilateral elements; the mesh has been generated using the algorithm presented in [4]; Highlighted elements are tangled

(negative Jacobian elements).

Unfortunately, mesh generators often struggle to produce tangle-free meshes [5, 6]. In an attempt to meet2

quality requirements, geometric conformance, and topological constraints (i.e. requirements 2-4 mentioned3

previously), many state-of-the-art mesh generation algorithms, such as Polycube mapping and frame-field4

based methods, end up producing tangled meshes [7, 8, 9, 8, 10, 11, 12, 13, 14, 15, 16, 17]. This issue is5

particularly severe with 3D hexahedral meshes, as highlighted in [5], stating, “maintaining the inversion-free6

(tangle-free) property of hex-mesh poses a great challenge”. Apart from mesh generation, tangled meshes7

also arise during shape optimization [18], large deformation simulations [19, 20], and mesh morphing [21].8

Numerous untangling algorithms have been developed to tackle these challenges [22, 23, 3]. However,9

untangling is not always guaranteed, as reported in multiple instances where no tangle-free solution is10

possible [3, 24, 23, 25]. To quote [25], “. . . it is probably impossible to untangle the mesh under these11

hard constraints.” In fact, certain topological structures may not have an untangled mesh solution [3, 26].12

Moreover, there are no known a priori tests to determine if a mesh can be untangled [27]. Finally, untangling13

can be expensive, and can pose challenges in mapping simulation data.14

Non-traditional methods developed to tackle meshing challenges include smoothed finite element (SFEM)15

[28], overlapping finite elements [29, 30, 31], polygonal finite element methods (PFEM) [32, 33, 34, 35],16

virtual element method (VEM) [36, 37, 38, 39, 40], unsymmetric finite element [41, 42]. These methods17

partly relax one or more meshing constraints (discussed at the beginning of the section). For instance, the18

overlapping finite element method allows highly distorted elements, i.e. requirement 2 mentioned previously.19
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The unsymmetric FEM relaxes the constraints related to tangling (requirement 1) and mesh distortion1

(requirement 2). Similarly, methods such as SFEM and VEM offer flexibility in element shapes (requirements2

1 and 2) [43, 44, 45] and allow hanging nodes (requirement 4) [46, 47, 48]. While the non-traditional methods3

provide promising solutions, meshing (tangling) challenges persist. These methods have limitations in terms4

of the configurations they can handle. For instance, practical meshes generated from state-of-the-art mesh5

generation algorithms, often contain ‘self-penetrating’ tangled elements [49], which are not addressed by these6

approaches. Additionally, it is difficult to integrate many of these methods with existing FEM framework.7

Recently, an isoparametric tangled finite element method (i-TFEM) [49, 50, 51, 51, 52, 53] was proposed8

which specifically addresses tangled elements (mesh requirement 1) by modifying traditional FEM. I-TFEM9

reduces to standard FEM for non-tangled meshes and requires minimal changes to the existing FEM frame-10

work. It can effectively handle real-world tangled meshes generated by the state-of-the-art mesh generation11

methods such as Polycube mapping [10, 11, 12] and frame-field [17] based approaches. I-TFEM has been12

demonstrated for linear and non-linear static elasticity and Poisson problems over tangled meshes.13

In this study, i-TFEM is extended to free and forced vibration problems, in both 2D and 3D. The14

paper presents a detailed variational formulation with examples covering three element types: 4-node and15

9-node quadrilateral, as well as 8-node hexahedral elements. The proposed method uses the same basis16

functions as standard FEM, and handles tangled elements by incorporating the field compatibility constraints.17

The computation of stiffness and mass matrices in i-TFEM is same as in standard FEM, allowing easy18

implementation in the existing FEM software. Numerous real-world and synthetically generated meshes are19

considered to demonstrate the efficiency and robustness of the method.20

The remainder of this paper is organized as follows: Section 2 addresses basic i-TFEM formulation, while21

Section 3 details the elastodynamic variational formulation for i-TFEM. Implementation details are provided22

in Section 4, followed by numerical results in Section 5. Finally, Section 6 presents concluding remarks.23

2. Isoparametric TFEM24

We provide here a brief review of important i-TFEM concepts [50, 53, 52] using a tangled 9-noded25

quadrilateral element (other elements are discussed later on). We consider an element to be tangled if26

the Jacobian determinant (|J |) at any of the quadrature points is negative. Note that elements with zero27

Jacobian at quadrature points are not addressed here. Consider the tangled Q9 element in the physical space28

(x1, x2) in Fig. 2a, and the parametric mapping ϕ from the (ξ1, ξ2) space in Fig. 2b to the tangled element.29

Observe that the mapping is non-invertible, i.e., there are distinct points (a and b) in the parametric space30

that map to the same physical point (p); such physical points lie outside the element. In other words,31

the element folds onto itself, creating an overlapping region, also referred to as the fold F (see Fig. 2c).32

Furthermore, at points such as a, the determinant of the Jacobian is negative, while at b, the determinant33

is positive. Thus, one can divide the parametric space into positive and negative regions denoted by J+
34
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and J− respectively. The corresponding regions in the physical space are referred to as positive (C+) and1

negative (C−) components respectively.2
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Figure 2: (a) Physical space of the tangled Q9 element. (b) Parametric space of the tangled element, that can be divided

into positive and negative Jacobian regions.Corresponding physical space with positive and negative components. (c) The

overlapping region or fold F1 of the tangled element.

The main idea in i-TFEM is to treat the positive and negative Jacobian regions (J+ and J−) separately

during stiffness matrix computation since the two independent mappings

ϕ± : J± → C±

are both invertible. This will also lead us to a few definitions.3

For a tangled element Ej , let N j(ξ) be the standard shape functions (i.e., biquadratic Lagrange shape4

functions for Q9 element) defined over the parametric space. Now, let N±
j be the restriction of N j to J±,5

i.e.,6

N±
j (x) := N j(ϕ

−1
± (x)) (1)

The corresponding displacement fields defined over C±
j are defined as:7

u±
j (x) := N±

j (x)dj (2)

where dj is the displacement vector for jth element. The components C+
j and C−

j overlap, creating a folded8

region Fj = C+
j ∩C−

j . To impose uniqueness of the field in the folded region, a field compatibility constraint9

is enforced in i-TFEM (also see [50] for additional explanation and [54] for treatment on displacement10

constraints) :11

u+
j (x)− u−

j (x) = 0, ∀x ∈ Fj . (3)
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Introducing the notation J·K = (·)+ − (·)−, the above constraint can be written as:1

JujK = 0 in Fj (4)

Now consider the two-element mesh shown in Fig. 3a (the central nodes are not shown to avoid clutter)2

where one of the elements (E1) is tangled. The positive and negative components of E1 are shown in Fig. 3b.3

Element E2 is not tangled and has only one positive component (see Fig. 3c), i.e., E2 = C+
2 while C−

2 = ∅.4

However, the component C−
1 overlaps with E2 as well, i.e., the overlapping region of the tangled element5

(C−
1 ) now intersects with E2. Construction of the stiffness matrix, i.e., integrating shape functions and their6

derivatives over a tangled mesh requires careful consideration of this overlap. For example, to compute the7

total area of the two-element mesh, we must subtract the integral over C−
1 to avoid double-counting:8 ∫

E1+E2

dΩ =

∫
C+

1

dΩ+

∫
C+

2

dΩ−
∫
C−

1

dΩ (5)

This will be relevant in the next section. Given this simple framework, one can now proceed towards applying9

these concepts to solve elastodynamics problems over tangled meshes.10

+

Fold (F1)

E1

E2

C1
+

C1

_
C2
+

(a)

(b)

(c) (d)

-

+

Figure 3: (a) 2-D domain discretized into two 9-node quadrilateral elements (central nodes are not shown to avoid clutter).

(b) Positive and negative |J | regions of the tangled element. (c) Non-tangled element of the mesh. (d) Overlapping region

intersects with the neighboring convex element.

3. i-TFEM for Elastodynamics11

3.1. Weak formulation12

Now consider an elastodynamics problem over a domain Ω that is discretized into m elements, some of13

which may be tangled (see Fig. 4). The body is subjected to body forces b and tractions t on ∂Ωt. We will14

assume that the field u satisfies Dirichlet boundary conditions uj = ud
j over ∂Ωd.15
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t

Figure 4: Domain Ω with boundary conditions and arbitrary mesh.

Let the elements be indexed by the set I = {1, . . . ,m}. Based on the principle of virtual work, recall the1

weak form of the governing equation for elastodynamics problems:2

Find displacement u ∈ H1 such that

b(δu, ρü) + a(δu,u) = f(δu), ∀δu ∈ H1
0 (6)

where, b(δu, ρü) =
∑
j∈I

∫
Ej

δuj · ρüj dΩ (6a)

a(δu,u) =
∑
j∈I

∫
Ej

ε (δuj) : σ (uj) dΩ (6b)

f(δu) =
∑
j∈I

∫
Ej

δuj · b dΩ +
∑
j∈I

∫
∂Et

j

δuj · t dS (6c)

where ρ is the mass density and ü is the acceleration. Assuming linear elastic material, the stress tensor σ3

is computed using the elasticity tensor D and strain tensor ε as σ = Dε.4

When the mesh is tangled as in Fig. 4, the standard weak form will lead to erroneous results (demon-5

strated later in Section 5). To resolve this, we make two modifications. Analogous to Eq. 5, integrals over6

negative components are subtracted to avoid double-counting. For example, for the two-element tangled7

mesh, the first term of the weak form is expressed as:8

b(δu, ρü) =

∫
C+

1

δu+
1 · ρü+

1 dΩ +

∫
C+

2

δu+
2 · ρü+

2 dΩ−
∫
C−

1

δu−
1 · ρü−

1 dΩ (7)

This applies to all tangled elements, and to all integral terms.9

Next, consider the field compatibility constraint in Eq. 4. We employ the Lagrange multiplier method10

[54, 55, 56, 57, 58, 59, 60] to enforce this constraint over every tangled element. For example, for the11

two-element mesh in Fig. 4a, we will require that:12 ∫
F1

δλ1 · Ju1K dΩ = 0 ∀ δλ1 ∈ L2, (8)

Moreover, we must suitably modify Eq. 6 as follows:

b(δu, ρü) + a(δu,u) +

∫
F1

Jδu1K · λ1 dΩ = f(δu), ∀δu ∈ H1
0 .
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We can now generalize these concepts to an arbitrary mesh. Let the tangled elements be identified by1

the index Itangled ⊂ I. The weak form in i-TFEM can then be expressed as follows:2

Find u ∈ H1 and λ ∈ L2 such that

b(δu, ρü) + a(δu,u) +
∑

j∈Itangled

∫
Fj

JδujK · λj dΩ = f(δu), ∀δu ∈ H1
0 (9a)

∑
j∈Itangled

∫
Fj

δλj · JujK dΩ = 0, ∀δλ ∈ L2 (9b)

where,

b(δu, ρü) =
∑
j∈I

∫
C+

j

δu+
j · ρü+

j dΩ−
∑

j∈Itangled

∫
C−

j

δu−
j · ρü−

j dΩ (10a)

a(δu,u) =
∑
j∈I

∫
C+

j

ε
(
δu+

j

)
: σ

(
u+
j

)
dΩ−

∑
j∈Itangled

∫
C−

j

ε
(
δu−

j

)
: σ

(
u−
j

)
dΩ (10b)

f(δu) =
∑
j∈I

∫
C+

j

δu+
j · bdΩ−

∑
j∈Itangled

∫
C−

j

δu−
j · bdΩ +

∑
j∈I

∫
∂Et

j

δuj · tdS (10c)

3.2. Finite element approximation3

We now approximate the primary field u and the Lagrange multiplier field λ as follows:4

uj ≈ N jdj , λj ≈ Nλ
j λ̂j (11)

Adopting the (Bubnov-) Galerkin framework, Eq. 9 leads to the following system of equations:

Md̈+Kd+ Sλ̂ = f (12a)

S⊤d = 0 (12b)

where the mass matrix is given by:5

M =A
j∈I

∫
C+

j

(
N+

j

⊤
ρN+

j

)
dΩ − A

j∈Itangled

∫
C−

j

(
N−

j

⊤
ρN−

j

)
dΩ, (13)

the stiffness matrix is given by:6

K =A
j∈I

∫
C+

j

(
∇N+

j

⊤
D∇N+

j

)
dΩ − A

j∈Itangled

∫
C−

j

(
∇N−

j

⊤
D∇N−

j

)
dΩ, (14)

the forcing term is given by:7

f =A
j∈I

∫
C+

j

N⊤
j b dΩ− A

j∈Itangled

∫
C−

j

N−
j

⊤
b dΩ+A

j∈I

∫
∂Et

j

N⊤
j t dS, (15)

and the constraint matrix by:8

S = A
j∈Itangled

∫
Fj

JN jK⊤NλdΩ = A
j∈Itangled

∫
Fj

(
N+

j −N−
j

)⊤
NλdΩ. (16)
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where A is the assembly operator. In Eq. 16, the choice of Nλ depends on the choice of N , i.e., the type1

of element (Q4, Q9, H8, etc.); see Section 4. Further, observe that the expressions in Eq. 13 through Eq. 162

entail integration over non-convex regions (C+
j , C−

j , and Fj), associated with tangled elements. Fortunately,3

this can be circumvented, as discussed in Section 4.4

One can incorporate damping with a damping matrix C and the velocity vector ḋ as:

Md̈+Cḋ+Kd+ Sλ̂ = f (17a)

S⊤d = 0 (17b)

In this paper, for simplicity, Rayleigh damping is assumed, i.e., C = α1M +α2K, where α1 and α2 are the5

Rayleigh damping coefficients.6

3.3. Forced vibration7

Many schemes [61, 62, 63] can be used to solve Eq. 17. In this work, we adopt the Newmark method (with

implicit time integration) [63, 64] for simplicity; for the state-of-the-art time integration methods, please see

[65, 66, 67]. Specifically, Eq. 17 at time t+∆t is expressed as:

Md̈t+∆t +Cḋt+∆t +Kdt+∆t + Sλt+∆t = f t+∆t (18a)

S⊤dt+∆t = 0 (18b)

The displacement and velocity vectors are updated as [68, 69]:

dt+∆t = q0 +
(
β∆t2

)
d̈t+∆t where, q0 = dt +∆tḋt +

(∆t)
2

2
(1− 2β) d̈t (19a)

and ḋt+∆t = q1 + (γ∆t) d̈t+∆t where, q1 = ḋt +∆t (1− γ) d̈t (19b)

where the Newmark paramters β and γ are set to β = 0.25 and γ = 0.5 [68, 69, 70, 71].8

Substituting Eq. 19 in Eq. 18, we arrive at:9 M + (γ∆t)C +
(
β∆t2

)
K S(

β∆t2
)
S⊤ 0

d̈t+∆t

λ̂t+∆t

 =

f t+∆t −Kq0 −Mq1

−S⊤q0

 . (20)

that must be solved at each time step. Observe that when the mesh does not contain any tangled elements,10

Eq. 20 reduces to (standard FEM):11 [
M + (γ∆t)C +

(
β∆t2

)
K

]
d̈t+∆t = f t+∆t −Kq0 −Mq1 (21)

Here, the expressions for M , K and f (Eq. 13 to Eq. 15) also reduce to that of the standard FEM.12

3.4. Free vibration13

If no damping or forcing terms exist, Eq. 17 reduces to:

Md̈+Kd+ Sλ̂ = 0 (22a)

S⊤d = 0 (22b)
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In free vibration analysis, d (x, t) can be expressed as d (x, t) = d̄ (x) sin (ωt), where ω is the frequency and

d̄ is the eigenvector. Thus, Eq. 22 reduces to:

−ω2Md̄+Kd̄+ Sλ̂ = 0 (23a)

S⊤d̄ = 0 (23b)

Thus, one must solve the following Eigen system:1 K S

S⊤ 0

d̄

λ̂

 = ω2

M 0

0 0

d̄

λ̂

 . (24)

4. Implementation2

We now discuss the implementation of the proposed methodology.3

4.1. Computing the Stiffness Matrix4

Consider again the two-element mesh in Fig. 4. According to Eq. 14, the elemental stiffness matrix5

associated with the non-tangled element E2 is:6

k2 =

∫
C+

2

(
∇N+

2

⊤
D∇N+

2

)
dΩ (25)

Since C+
2 = E2, k2 can be computed numerically via standard Gauss integration, i.e.,7

k2 =

1∫
−1

1∫
−1

(
J−1∇ξN2

)⊤
D

(
J−1∇ξN2

)
|J |dξ1dξ2. (26)

where, |J | represents the determinant of the Jacobian matrix (J). On the other hand, the stiffness matrix8

k1 associated with the tangled element E1 is given by (see Eq. 14):9

k1 =

∫
C+

1

(
∇N+

1

⊤
D∇N+

1

)
dΩ −

∫
C−

1

(
∇N−

1

⊤
D∇N−

1

)
dΩ (27)

Recall that C+
1 (C−

1 ) gets mapped to the J+ (J−) region of the parametric space (see Fig. 2c). Accordingly,10

the differential area for the positive component is given by:11

dΩ = dx1dx2 = |J |dξ1dξ2 (28)

On the other hand, the differential area for the negative component is given by:12

dΩ = dx1dx2 = −|J |dξ1dξ2 (29)

Accordingly, the two terms of k1 are given by:13 ∫
C+

1

(
∇N+

1

⊤
D∇N+

1

)
dΩ =

∫
J+

(
J−1∇ξN

+
1

)⊤
D

(
J−1∇ξN

+
1

)
|J |dξ1dξ2 (30)

9



and1 ∫
C−

1

(
∇N−

1

⊤
D∇N−

1

)
dΩ = −

∫
J−

(
J−1∇ξN

−
1

)⊤
D

(
J−1∇ξN

−
1

)
|J |dξ1dξ2 (31)

Thus,2

k1 =

∫
J+

(
J−1∇ξN

+
1

)⊤
D

(
J−1∇ξN

+
1

)
|J |dξ1dξ2 +

∫
J−

(
J−1∇ξN

−
1

)⊤
D

(
J−1∇ξN

−
1

)
|J |dξ1dξ2. (32)

When the two terms on RHS are grouped together, they represent the entire parametric space of the tangled3

element, i.e., J+ ∪ J− = [−1, 1]2. The fact that entire parametric space is now considered enables us to use4

standard Gauss integration, albeit with the sign of the Jacobian determinant included, i.e., one should not5

use the absolute value of the Jacobian determinant, but its signed value. This results in6

k1 =

∫
J+∪J−

(
J−1∇ξN1

)⊤
D

(
J−1∇ξN1

)
|J |dξ1dξ2. (33)

Thus, to obtain the elemental stiffness matrix in i-TFEM, standard Gauss integration can be employed7

for both regular and tangled elements, but the sign of the Jacobian must be retained. In many FEM8

implementations, the absolute value of the Jacobian determinant is used, and this will lead to erroneous9

results. The mass matrix and the forcing terms are computed similarly. It was shown in [72] that decomposing10

the domain into positive and negative Jacobian regions is equivalent (in terms of accuracy and convergence)11

to numerically integrating over the element domain.12

In addition to the stiffness and the mass matrices, the constraint matrix must be included in i-TFEM13

formulation as discussed next. If all the Gauss points lie in the positive Jacobian region, then standard FEM14

is valid, and there is no need for additional constraints.15

4.2. Constraint Enforcement16

Next, consider the constraint matrix S in Eq. 16. Recall that the choice of Nλ depends on the element17

type, i.e., N . For Q9 elements, where the primary field u is approximated using standard biquadratic18

functions N , we select linear functions Nλ to approximate λ. This choice of the Nλ satisfies the following19

conditions [68]: (a) S is full-ranked, and (b)20

nu ≥ nλ (34)

where, nu and nλ are the number of unknown degrees of the primary variable u and the Lagrange variable21

λ respectively.22

For the two-element Q9 mesh depicted in Fig. 4a, the kth column-group of S is given by:23

Sk =

∫
F1

JN1 (p)K⊤Nλ
k (p) dΩ (35)

where p denotes a point within the fold F1 and Nλ
k is the kth group of Nλ. The number of columns in24

each group is equal to the number of degrees of freedom per node. Computing Eq. 35 involves integration25

10



over the non-convex region (F1) which can be challenging and computationally expensive [53]. To overcome1

this issue, we employ a point-collocation approach [68, 73]. Point collocation has been used in several FEM2

formulations where such constraints arise [74, 75, 76, 77, 78], and will be discussed next.3

For the 2-element mesh, recall that the compatibility constraint (Eq. 3) implies that for any point p4

inside F1:5

JN1 (p)Kd1 = 0 i.e.,
(
N+

1 (p)−N−
1 (p)

)
d1 = 0 (36)

Consider three noncollinear points (p1, p2, and p3) located in the fold (see Fig. 5).6

Fold F1

Figure 5: Three noncollinear points within the overlapping region.

By evaluating JN1 (·)K at these points, we can construct a matrix S, where the kth column-group of S7

is given by8

Sk = JN1 (pk)K
⊤ (37)

From Eq. 369

S
⊤
d = 0. (38)

While the matrices S and S are different, observe the similarities: (a) they both satisfy the compatibility10

constraints and (b) their columns are linearly independent, i.e., rank(S) = rank(S) = nλ (= 6 in this case).11

Therefore, we replace the S matrix in Eq. 17 with S. This leads to a different set of Lagrange multipliers12

λ̄, but this is acceptable since λ itself is not of importance here. Thus, the integration over the overlapping13

region can be completely avoided.14

For Q9 elements, the number of constraint equations is equal to 3 × degree(s) of freedom per node per15

tangled element. Hence for elastodynamics, the number of constraint equations required is 6 per tangled Q916

element. To construct the S matrix for Q9 elements, Eq. 37 is evaluated at three non-collinear points (p1,17

p2, and p3) located inside the overlapping region (preferably away from the |J | = 0 curve). Recall that any18

point pk within the fold can be mapped to two points ak and bk in the parametric space, belonging to the19

regions J− and J+ respectively. Thus, for each point pk, we have20

Sk =
(
N+

1 (pk)−N−
1 (pk)

)⊤
= (N1(bk)−N1(ak))

⊤
(39)

The methodology for finding ak and bk is discussed below.21

For a tangled element Ej , a list L of Gauss points with negative Jacobian is generated. If the number22

of points in L are less than 3, the remaining J− points are searched from the Gauss quadrature rule with23

11



successively higher number of points. For instance, if the standard Gauss quadrature of 3 × 3 includes two1

Gauss points in J− region, the remaining point is searched from 4×4 Gauss quadrature points. If no point is2

found, higher quadrature rule is employed until three unique ak points in J− are obtained. For the examples3

considered in this paper, we had search for no more than 5× 5 Gauss points.4

Once three ak points are found, the corresponding points pk in the physical space can be computed using5

the basis functions:6

pk = N j(ak)x̂j (40)

where x̂j is the position vector for the nodes of the element Ej . Once the physical point pk belonging to7

the fold is obtained, the corresponding point bk ∈ J+ can be obtained via the Newton-Raphson method.8

Finally, Eq. 37 can be employed to compute the constraint matrix.9

This simple procedure to compute the constraint matrix alleviates the need to explicitly identify the10

boundary of the tangled region. Note that the number of constraints must not exceed the recommended11

number (3× 2 in this case), else it may lead to over-constraining the element, or locking.12

4.3. Multiple Overlaps13

Thus far, the overlapping region was shared by only one neighboring non-tangled element. However, in14

practice, the overlapping region may be shared by multiple non-tangled elements as illustrated in Fig. 6. In15

this case, three non-tangled elements E2, E3, and E4 intersect with the overlapping region of the tangled16

element E1. However, this does not change the methodology. For example, the total area is given by:17 ∫
E1+E2+E3+E4

dΩ =

∫
C+

1

dΩ+

∫
C+

2

dΩ+

∫
C+

3

dΩ+

∫
C+

4

dΩ−
∫
C−

1

dΩ (41)

i.e., the integral over the negative component must be subtracted once. Furthermore, the field compatibility18

equation is as before:19

Ju1K = 0 in F1 (42)

Consequently, the stiffness and mass matrices, forcing vectors, and constraint matrix are computed as20

before: (1) standard stiffness matrices ki, i = 1, . . . , 4 are computed for all elements using standard Gauss21

integration while retaining the sign of the Jacobian (the mass matrices and forcing vectors are computed22

similarly), and (2) the constraint matrix is computed by evaluating Eq. 37 at (any) three points within each23

fold Fj .24

Figure 6: Overlapping region shared by multiple non-tangled elements; central nodes are not shown to avoid clutter.
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4.4. Extension to Other Element Types1

We now consider the extension of the above framework to other element types, specifically, 2D 4-node2

quadrilateral (Q4) and 3D 8-node hexahedral (H8) elements.3

First, consider a four-node tangled quadrilateral (Q4) (Fig. 7a). The parametric space of this element is4

shown in Fig. 7b and Fig. 7c shows the overlapping region of the tangled Q4 element. The concepts discussed5

for Q9 elements directly apply here as well except that only one constraint equation is needed per tangled6

element since the dimension of the primary field has reduced.7
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Figure 7: (a) A tangled Q4 element. (b) Parametric space of the concave element. Parametric space can be divided into positive

and negative Jacobian regions. (c) Physical space of the tangled Q4 element along with tangled region.

Next, consider a 3D 8-node hexahedral element in Fig. 8a. Observe that the element is non-convex.8

Fig. 8b shows the positive and negative Jacobian regions of the parametric space. Here too, the parametric9

mapping becomes non-invertible and the element is said to be tangled. The corresponding overlapping region10

is shown in Fig. 8c. Here again, the displacement field being (tri)linear, we require one constraint per tangled11

element.12
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Figure 8: (a) A tangled hexahedral element. (b) Parametric space of the tangled element. Parametric space can be divided

into positive and negative Jacobian regions. (c) The overlapping region (fold) of the tangled element.

In summary, for both Q4 and H8 elements, to obtain the constraint matrix, we need to consider only one13

13



point in the tangled region and evaluate Eq. 37 at that point.1

5. Numerical Experiments2

The use of tangled meshes for free and forced vibration analysis is verified using the proposed i-TFEM3

framework. Numerical experiments are conducted under the following conditions:4

� The implementation is in MATLAB R2022a, on a standardWindows 10 desktop with Intel(R) Core(TM)5

i9-9820X CPU running at 3.3 GHz with 16 GB memory.6

� The standard Gaussian quadrature is employed for all elements; that is, 2 × 2 for Q4, 3 × 3 for Q9,7

and 2× 2× 2 for H8.8

� In standard FEM, the absolute value of Jacobian determinant is employed (to be consistent with9

commercial FEM systems such as ANSYS). Without the absolute value, and without the constraint,10

standard FEM can lead to nonsensical results [51].11

5.1. Cantilever Problem12

Consider the cantilever beam in Fig. 9 with dimensions L = 200 mm, h = 10 mm, and b = 10 mm.13

The material properties are: Young’s modulus E = 45.36 GPa, Poisson’s ratio ν = 0.25, and mass density14

ρ = 7397 kg/m3. This problem is discussed in [40], and is investigated here using Q4, Q9, and H8 tangled15

elements.16

L

A

b

h

Figure 9: A cantilever beam problem.

5.1.1. 2D cantilever: Mesh Construction17

The beam is first modeled as a plane stress problem. We consider tangled and non-tangled (regular)18

meshes for both 4-node (Q4) and 9-node (Q9) elements. The number of elements is controlled by a mesh-19

index N , where the number of elements in the regular mesh is 20N ×N . The corresponding tangled mesh is20

created by replacing each element by a pair of elements (one of them being tangled) as illustrated in Fig. 11.21

Fig. 10 illustrates a regular Q4 mesh when N = 2, and Fig. 11, the corresponding tangled mesh. The22

repeating units for both meshes are shown on the right-hand side of each figure. For the tangled mesh, the23

position of the re-entrant vertex R can be varied using the parameter d ∈ (0, 0.5) where d = 1/3 in Fig. 11.24

14



 

Figure 10: Regular Q4 mesh with N = 2

x1
R  = (0.5+d) (x1

P- x1
Q)  + x1

Q 
 

x2
R  = (0.5+1.05d) (x2

P- x2
Q)  + x1

Q

P

Q

R

Figure 11: Tangled Q4 mesh with N = 2.

The repeating units for regular and tangled Q9 meshes are illustrated in Fig. 12a and Fig. 12b respectively.1

Note the interior edges have a slight curvature. The extent of tangling is once again controlled by d.2

(a) (b)

Figure 12: Q9 repeating unit for (a) regular (b) tangled meshes.

5.1.2. 2D Cantilever: Convergence of Natural Frequencies3

We now compare the natural frequencies of the cantilever computed from three different methods: stan-4

dard FEM over regular mesh, standard FEM over tangled mesh, and i-TFEM over tangled mesh. Using the5

Q4 elements, for all three methods, the first and second natural frequencies are plotted as a function of N6

in Fig. 13a and Fig. 13b respectively. Observe that FEM over a regular mesh and i-TFEM over the tangled7

mesh converge to the same value. On the other hand, FEM over a tangled mesh converges to an incorrect8

solution.9
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Figure 13: Convergence of (a) first and (b) second natural frequency of the cantilever computed with Q4 tangled elements.

Fig. 14 shows similar plots using Q9 elements. Here the error in standard FEM over tangled meshes is1

even more pronounced.2
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Figure 14: Convergence of (a) first and (b) second natural frequency of the cantilever computed with Q9 tangled elements.

5.1.3. 2D cantilever: Forced Vibrations3

In this example, the same cantilever beam is subjected to a transient loading f(t) = 4.54 sin (πt/T ) kN4

for 0 ≤ t ≤ T where T is the natural period of the cantilever (see Fig. 15). The load is applied at the top5

right corner of the beam (point A in Fig. 9).6
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Figure 15: Transient loading for cantilever beam.

This problem is first solved using a tangled mesh with Q4 elements. Four different mesh sizes are1

considered: N = 2, 3, 4, and 8. The vertical displacement of the cantilever tip vA is plotted with respect to2

time as normalized/dimensionless parameters vAEI/L3 and t/T respectively in Fig. 16, where I = bh3/123

is the second moment of inertia. Note that this problem uses the same parameters given at the beginning4

of Section 5.1. But, for completeness, they are repeated here: L = 200 mm, h = 10 mm, and b = 10 mm,5

E = 45.36 GPa, ρ = 7397 kg/m3, ν = 0.25. The reference solution is obtained using a regular Q9 mesh6

of size 160 × 8 (N = 8). As one can observe, i-TFEM converges to the reference solution as the mesh7

discretization is increased.8
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Figure 16: Convergence for the tangled Q4 meshes using i-TFEM.

Next, for the mesh size of N = 8, we compare the solutions obtained by the three methods: FEM and9

i-TFEM using the tangled mesh and FEM using untangled mesh. The normalized tip displacements obtained10

using the three methods are plotted in Fig. 17a for Q4 elements, and Fig. 17b for Q9 elements. Observe that11

the response obtained using i-TFEM (over the tangled mesh) matches with that obtained over the regular12

mesh. However, FEM over the tangled mesh leads to incorrect results.13
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Figure 17: Comparison of i-TFEM and FEM solutions with N = 8 mesh using (a) Q4 and (b) Q9 elements.

5.1.4. 2D Cantilever Beam: Degree of Tangling1

In the above study, the extent of tangling was fixed with d = 0.4. Next, we study the effect of tangling2

parameter d for a fixed mesh size N = 2. Fig. 18a plots the i-TFEM solution for various values of d. Observe3

that as the tangling increases (i.e. as d increases), the i-TFEM solution approaches the result obtained by4

the corresponding regular mesh.5

To compare the performance of FEM and i-TFEM, we plot the maximum value of normalized tip dis-6

placement for d ∈ [0, 0.499] in Fig. 18b. Observe that for d < 0.2, i-TFEM solution matches FEM solution7

for the tangled mesh. The Jacobian at all the Gauss points are positive and i-TFEM reduces to the standard8

FEM. For d ≥ 0.2, Jacobian is negative at one or more Gauss points. As d ∈ [0.2, 0.499] increases, i-TFEM9

results approach the results obtained by employing the regular mesh. On the other hand, FEM solutions10

increasingly move farther away from those obtained using regular mesh.11
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Figure 18: Solutions obtained using Q4 mesh with mesh index N = 2 to study the effect of varying the extent of tangling.

5.1.5. 3D cantilever: Mesh Construction1

Next, we discretize the 3D cantilever using regular and tangled meshes. A regular mesh with 60× 3× 32

elements is shown in Fig. 19.3

Figure 19: Regular H8 mesh with N = 1

The regular repeating unit consists of 3 × 3 × 3 elements as shown in Fig. 20a. The tangled repeating4

unit is constructed by modifying the non-tangled unit in two steps:5

1. We convert each element of the regular mesh into a 2-element unit, as depicted in Fig. 20b, resulting

in 54 elements. Positions of the new re-entrant nodes (nodes 9 and 10) are given as

x
(9)
3 = x

(1)
3 , x

(9)
i = x

(1)
i + (0.5− d) si, i = 1, 2 (43a)

x
(10)
3 = x

(5)
3 , x

(10)
i = x

(5)
i + (0.6− d) si, i = 1, 2 (43b)

where si is the element size in ith direction and the parameter d controls the extent of tangling6

(discussed later).7
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2. We then move the node B (highlighted in red in Fig. 20a), using the same parameter d, towards the

left-hand side.

x
(B)
d = x(B) − d× [1.75s1 1.75s2 0.7s3]

⊤. (44a)

The value of the parameter d can be varied from 0 to 0.48. The front view of a resulting tangled mesh for1

d = 0.4 is illustrated in Fig. 20c.2
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Figure 20: (a) Regular mesh (b) Non-tangled element converted to tangled element (c) Front view of the tangled mesh.

The tangled mesh unit (Fig. 20c) has 54 elements; out of which 28 elements are tangled. Fig. 21 illustrates3

some of the tangled elements. These elements are non-convex with non-planar faces.4
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Figure 21: Some tangled elements present in the mesh shown in Fig. 20c
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5.1.6. 3D cantilever: Forced Vibration1

We perform forced vibration analysis of the 3D cantilever beam as described in section 5.1.3. To dis-2

cretize the domain, N number of cubic repeating units described above are arranged in the configuration of3

(20N ×N ×N).4

We solve this problem using the tangled meshes with N = 1 to 3 and d = 0.4. The response of the5

cantilever using i-TFEM is depicted in Fig. 22a. The normalized vertical displacement of the cantilever tip6

vAEI/L3 is plotted with respect to normalized time t/T . The reference solution is obtained by considering a7

regular (non-tangled) mesh with 67,500 elements. Next, for mesh withN = 2, Fig. 22b compares the solutions8

obtained by the three methods: FEM and i-TFEM using the tangled mesh and FEM using untangled mesh.9

We can observe similar convergence and trends as in the 2D problem.10

0.0 0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

 Reference
  N = 3  iTFEM H8
  N = 2  iTFEM H8
  N = 1  iTFEM H8

N
or

m
al

iz
ed

 ti
p 

di
sp

la
ce

m
en

t

Normalized time (  t / T )

(a)

0.0 0.5 1.0 1.5 2.0
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 ti
p 

di
sp

la
ce

m
en

t

Normalized time (  t / T )

 Regular H8: FEM/iTFEM
 Tangled H8: iTFEM  
 Tangled H8: FEM

(b)

Figure 22: (a) Convergence for tangled hexahedral (H8) meshes using i-TFEM (b) Comparison of i-TFEM and FEM solutions

obtained using hexahedral meshes with the size N = 2 .

5.1.7. 3D Cantilever: Degree of Tangling11

In the above study, the extent of tangling was fixed with d = 0.4. Here, we study the effect of tangling on12

the computed solutions by varying d from change 0 to 0.48 for a fixed mesh size, with N = 2. Once again, as13

d increases, the i-TFEM solution approaches the reference solution as illustrated in Fig. 23a. Next, we plot14

the maximum normalized displacement obtained using i-TFEM (over tangled mesh) and FEM (obtained15

over regular and tangled mesh) in Fig. 23b. As seen in the 2D example, FEM deviates from the expected16

results with an increase in d, as opposed to i-TFEM.17
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Figure 23: Solutions with hexahedral (H8) N = 2 mesh to study the effect of varying the extent of tangling.

5.2. Spherical Shell with Damping1

Next, we investigate the damping of a spherical shell subjected to a concentrated load as illustrated in2

Fig. 24. The problem has been previously investigated in [79]. The geometric parameters of the shell are as3

follows: inner radius = 120 mm, thickness = 1 mm, and outer chord radius c = 22.9 mm. A concentrated4

load f(t) = 0.1 cos(0.05t) kN is applied at the apex while the outer surface is fixed along the thickness.5

Rayleigh damping coefficients are α1 = 0.005, α2 = 0.272 while other material parameters are E = 10006

GPa, ρ = 104 kg/m3, and ν = 0.3.7

f (t)

c

Figure 24: Spherical shell geometry

Due to axisymmetric nature of the shell, it is modeled in 2D as shown in Fig. 25. The mesh for this8

example is constructed by using the 4-element mesh as the basic repeating unit, as in Fig. 25. The extent of9

tangling can be varied by the parameter d ∈ [0, 0.5]. For d = 0, a regular mesh is obtained. As d increases,10

one out of the four elements gets tangled. In this experiment, tangled mesh is constructed with d = 0.47511

and has 40× 4 Q9 elements.12
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Figure 25: Spherical shell with Q9 elements with straight edges.

The apex (point A in Fig. 25) displacement with respect to time is plotted in Fig. 26. Once again,1

the solution obtained using i-TFEM with the tangled mesh closely matches the solution obtained using the2

regular mesh.3
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Figure 26: Transient responses of the spherical shell subjected to a harmonic loading.

5.3. 3D real world tangled meshes: Free Vibration4

Finally, we consider real-world tangled meshes illustrated in Fig. 27 (provided in [3]) where the tangled5

elements are highlighted in red color. Although it is feasible to untangle these meshes [3], the use of i-TFEM6

eliminates the need for untangling.7
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(a) (b)

Figure 27: Tangled mesh of (a) linking rod and (b) block provided by [3]. Tangled elements are highlighted in red.

For free vibration analysis, we consider the following material properties: E = 673 GPa, ρ = 5759 kg/m3,1

and ν = 0.28. For the linking rod, the inner surface of the smaller hole is fixed, while the bottom face is2

fixed for the block. The first mode deformation obtained by employing i-TFEM is visualized in Fig. 28.3

(a)

(b)

Figure 28: The first mode deformation for (a) linking rod and (b) block; obtained using i-TFEM.

Table 1 compares the first four natural frequencies obtained via i-TFEM using the tangled mesh with4

those obtained using the untangled mesh. It can be observed that the natural frequencies obtained from5

both methods are comparable, and the additional computational time required for i-TFEM is minimal. The6

time required to untangle the mesh is not included. Note that the tangled meshes in Fig. 27a and Fig. 27b7

are generated using multi-sweep [80] and PolyCube [12] respectively.8
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Table 1: Comparison of solutions over tangled and untangled meshes provided in [3].

Model [3] Mesh |J |min

No. of Tangled Natural frequency (Hz) Time

Hexahedra 1 2 3 4 (seconds)

linking rod
tangled -0.39 8/11316 6.370 15.536 28.819 68.998 17.167

untangled 0.55 0/11316 6.361 15.533 28.790 68.907 17.137

block
tangled -0.70 10/2520 1542 1544 5604 6539 3.549

untangled 0.25 0/2520 1547 1548 5584 6731 3.520

Finally, we consider the tangled meshes generated by other state-of-the-art hex meshing algorithms:1

frame-field [81] and semi-manual dual sheet [7] approach. These methods resulted in the tangled meshes in2

Fig. 29a and Fig. 29b respectively. The mesh data was obtained from Hexalab repository [82]. I-TFEM was3

employed to compute the vibration modes over these tangled meshes. Table 2 provides the computational4

time required for i-TFEM as well as FEM (albeit with inaccurate results). Observe that the computational5

overhead due to i-TFEM is within 3% of the FEM simulation time.6

(a)

(b)

Figure 29: The first mode deformation for (a) i02u m2 [81] and (b) rod [7] ; obtained using i-TFEM.

Table 2: Time comparison with i-TFEM and FEM for real-world tangled meshes.

Model |J |min

No. of Tangled Natural frequency (Hz) Time (seconds)

Hexahedra 1 2 3 4 i-TFEM FEM

(incorrect)

i02u m2 [81] -0.41 7/37800 12.1 27.3 58.4 159.6 95.684 92.716

rod [7] -0.59 3/704 514.8 636.0 2989.8 5659.7 0.527 0.519
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5.4. Need for constraints1

Recall that i-TFEM requires the field compatibility constraints to be enforced. To underline the signif-2

icance of constraints, a free vibration analysis of a cantilever beam is conducted. The cantilever beam (see3

Fig. 9) with following parameters is considered [83, 84, 85]: L = 100 mm, h = 10 mm, b = 1 mm, E = 205.94

GPa, ρ = 7845 kg/m3, ν = 0.3. A plane stress condition is assumed. The tangled Q9 mesh is created using5

the repeating unit shown in Fig. 12b. The resulting vibration modes, both with and without imposition6

of compatibility constraints, are displayed in Fig. 30 and Fig. 31 respectively. Notably, no spurious modes7

occur with the application of constraints. However, spurious modes appear in the absence of constraints as8

illustrated in Fig. 31.9

(1)

(3)

(5)

(2)

(4)

(6)

Figure 30: First 6 modes of the cantilever beam obtained with constraints.

(1)

(3)

(5)

(2)

(4)

(6)

Figure 31: First 6 modes of the cantilever beam obtained without incorporating constraints.
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6. Conclusions1

In conclusion, the presence of tangled (non-convex) elements in standard finite element meshes can lead to2

erroneous results. In this paper, we have proposed the isoparametric tangled finite element method (i-TFEM)3

to handle tangled elements for free and forced vibration problems. The proposed i-TFEM is demonstrated4

for 4-node (Q4), 9-node (Q9) quadrilateral, and 8-node hexahedral (H8) elements.5

By treating the positive and negative Jacobian regions separately, variational formulation for i-TFEM6

is derived for elastodynamics. This leads to a simple modification of the standard FEM stiffness and mass7

matrices and the inclusion of piece-wise compatibility constraints. Specifically, the stiffness and mass matrices8

in i-TFEM can be computed as in standard FEM, but the sign of the Jacobian determinant is retained during9

integration. To enforce compatibility over the fold, a constraint matrix S must be constructed by sampling10

the shape functions at nc points within the fold, where nc = 1 for Q4 and H8 elements, and nc = 3 for a Q911

elements.12

Finally, numerous examples are presented to demonstrate that i-TFEM consistently handles tangled13

elements and produces reliable solutions. The time required for i-TFEM is found to be almost identical to14

that for standard FEM in practical scenarios.15

In this work, degenerate elements, where the Jacobian is equal to zero at a Gauss point, are not considered16

since zero-Jacobian value causes singularity in the stiffness matrix. Moreover, fully inverted elements, which17

have negative Jacobian at all the Gauss points are also not considered in this paper. Such elements will be18

addressed in future work.19
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