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Abstract

This paper presents an isoparametric tangled finite element method (i-TFEM) method for handling

tangled high order/curvilinear meshes. Tangled elements, i.e. elements with negative Jacobian determinant,

frequently occur during various stages of analysis and optimization, leading to erroneous results in standard

finite element method (FEM). The proposed i-TFEM is an extension of standard FEM to allow for tangled

elements. Specifically, a novel variational formulation is proposed that leads to a simple modification of

the standard FEM stiffness matrix and additional piece-wise compatibility constraints. Moreover, i-TFEM

reduces to the standard FEM for non-tangled (regular) meshes. The accuracy of the proposed i-TFEM

is demonstrated for tangled 9-node quadrilateral (Q9) and 6-node triangular (T6) elements. Numerical

experiments involving linear and nonlinear elasticity and Poisson problems illustrate that the accuracy and

convergence rate of the proposed i-TFEM over a tangled mesh is comparable to that of the standard FEM

over a non-tangled mesh.
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1. Introduction

Higher-order finite elements typically exhibit higher accuracy and convergence rate at a lower compu-

tational cost, compared to their lower-order counterparts [1, 2]. Consequently, they have been deployed in

various applications including solid mechanics [3, 4], fluid mechanics [5, 6], electromagnetics [7], coupled

problems [8], etc.

In this paper, we consider tangled meshes where one or more elements exhibit negative Jacobian, i.e.,

where the parametric mapping is not fully invertible (the notion of non-invertible mapping is further elabo-

rated in the next section). Specifically, the paper focuses on tangled Q9 and T6 elements, as illustrated in

Fig. 1c and Fig. 1d respectively. It is well known that the standard finite element method (FEM) will lead

to erroneous results over such meshes [1, 9, 10, 11]. Unfortunately, tangled meshes frequently occur during

meshing [12, 13, 14, 15], mesh optimization [16, 17, 18], shape optimization [19, 20] and mesh morphing [21].

To quote [22], “... challenge in the generation of high-order meshes is mesh tangling.”
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Since tangled meshes have been traditionally considered unacceptable (invalid) for finite element anal-

ysis, several mesh untangling [23, 22, 24, 25, 26] techniques have been developed. Many popular mesh

generating software with built-in untangling algorithms may fail to untangle the meshes [27]. To quote [27]

“... (meshCurve and Netgen) resulted in tangled meshes which the respective software packages failed to

untangle.”

(a)

(b)

(c) (d)

Figure 1: (a) Tangled mesh with 9-node quadrilateral elements; the mesh has been generated using the algorithm presented

in [28]; (b) Tangled mesh with 6-node triangular elements; the mesh has been provided by the authors of [22]. Highlighted

elements are tangled (negative Jacobian elements). A typical element with negative Jacobian (c) quadrilateral (Q9), and (d)

triangular (T6).

Various non-traditional finite element methods have been proposed to handle such tangled elements.

Methods such as the smoothed finite element method [29] and virtual element method [30] were initially

proposed to handle tangled lower order elements, and later extended to higher order elements [2, 31, 32, 33,

34]. However, they do not reduce to standard FEM for non-tangled (regular) meshes. Unsymmetric finite

elements [35] have been proposed to handle tangled higher order elements, but they result in asymmetric

stiffness matrices.

Recently an isoparametric tangled finite element method (i-TFEM) framework [36] was proposed to han-
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dle tangled 4-node quadrilateral (Q4) and 8-node hexahedral (H8) elements. The method was demonstrated

for linear elasticity [36], Poisson [37], incompressibility as well as nonlinear elasticity [38] problems. It was

shown that i-TFEM reduces to standard FEM for regular (non-tangled) meshes and produces symmetric

stiffness matrices. However, the implementation of i-TFEM discussed in [36] requires integration over non-

convex folded regions (that is induced by tangling); this was performed by triangulating the region. For

Q4 elements, the folded regions are simple triangles, and therefore the integration can be performed eas-

ily. However, for Q9 and T6 elements, the folded regions have curved boundaries, and the integration is

computationally expensive since a large number of triangles are needed to achieve high accuracy.

In this paper, we introduce a novel variation of i-TFEM, which makes the implementation simpler,

faster, and well-suited for handling higher order elements with curved edges. Specifically, we generalize

the i-TFEM method to Q9 and T6 elements through three contributions. The first is to develop a mixed

variational formulation based on the stationary potential energy principle with compatibility constraint over

the tangled regions. This leads to the second contribution of developing an efficient method to compute

the stiffness matrix that does not entail integrating over the fold. The third contribution is to also provide

a numerically efficient method for constructing the compatibility matrix. Numerical experiments involving

linear and nonlinear elasticity as well as Poisson problems demonstrate that i-TFEM can match the accuracy

of standard FEM over non-tangled (regular) meshes.

The remainder of this paper is organized as follows. The basic concept underlying i-TFEM is reviewed

in Section 2. Then, a variational treatment of i-TFEM for Q9 and T6 elements is presented in Section 3,

followed by a detailed description of the implementation in Section 4. Results from numerical experiments

are presented in Section 5, and conclusions in Section 6.

2. Background: Isoparametric TFEM

We briefly review critical i-TFEM concepts [36, 39, 37], prior to generalizing these concepts via a vari-

ational formulation. Consider the standard mapping ϕ from a parametric (ξ1, ξ2) space in Fig. 2a to the

tangled (partially inverted) element in the physical space (x1, x2) as shown in Fig. 2b. Observe that the

mapping is non-invertible; i.e., two points (a and b) in the parametric space map to the same point p in the

physical space. Visually, the element folds onto itself. Further, at points such as a, the determinant of the

Jacobian is negative, while at b, the determinant is positive. Thus, one can divide the parametric space into

positive and negative regions denoted as J+ and J− respectively. The procedure to identify the J+ and J−

regions is discussed in Appendix A. However, it is important to note that identification of the J+ and J−

regions is not required in the proposed i-TFEM formulation (see Section 4).
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Figure 2: (a) Parametric space of the tangled element. Parametric space can be divided into positive and negative Jacobian

regions. (b) Physical space of the tangled Q9 element. (c) Positive and negative components

The main idea in i-TFEM is that the positive and negative Jacobian regions (J+ and J− ) are treated

separately while constructing the stiffness matrix. The corresponding regions in the physical space are

referred to here as positive (C+) and negative (C−) components respectively (see Fig. 2c). Observe the two

independent mappings

ϕ± : J± → C±

are invertible (bijective). Thus, i-TFEM replaces the full-invertibility constraint by partial invertibility.

3. Proposed Method

Now consider the two-element mesh shown in Fig. 3a (the central nodes for the two Q9 elements are

not shown to avoid clutter). The positive and negative components of the tangled element E1 are shown

in Fig. 3b. On the other hand, the non-tangled element E2 has only one positive component (see Fig. 3c):

E2 = C+
2 while C−

2 = ∅. Further, the fold F1 illustrated in Fig. 3d overlaps with E2 as well.
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Figure 3: (a) 2-D domain discretized into two 9-node quadrilateral elements (central nodes are not shown to avoid clutter). (b)

Positive and negative |J | regions of the tangled element. (c) Non-tangled element of the mesh. (d) Fold overlaps with neighbor.

Let N j(ξ) be the standard biquadratic Lagrange shape functions defined over the parametric space. Let

N±
j be the restriction of N j to J±, i.e.,

N±
j (x) := N j(ϕ

−1
± (x)) (1)

The corresponding fields are given by

u±
j (x) = N±

j (x)ûj (2)

Since any point x in the fold belongs to three components C+
1 , C−

1 , and C+
2 , one can define three fields

u+
1 (x), u−

1 (x) and u+
2 (x). To resolve this ambiguity and to ensure field continuity, a piecewise compatibility

constraint is enforced over the fold [36]:

u+
1 (x)− u−

1 (x) = 0, ∀x ∈ F1. (3)

Introducing the notation J·K = (·)+ − (·)−, the above constraint can be written as:

Ju1K = 0, in F1. (4)

We will now consider solving the Poisson problem over the two-element mesh. Recall that the standard

potential energy for the Poisson problem is given by:

Π =

∫
E1

(
1

2
(∇u1)

⊤
D (∇u1)− u1b

)
dΩ+

∫
E2

(
1

2
(∇u2)

⊤
D (∇u2)− u2b

)
dΩ−

∑
j∈1,2

∫
∂Eq

j

ujqdS (5)

where D is the material constitutive matrix, b is the source term, and q is the boundary flux over the

boundary ∂Eq
j . We will assume that the field u satisfies the Dirichlet boundary condition uj = ud

j over the
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boundary ∂Ed
j . The above formulation (used in standard FEM) leads to erroneous results over the tangled

mesh (later demonstrated in Section 5). On the other hand, in i-TFEM, positive and negative components

are handled separately.

To motivate the concept, observe that the total area of the two-element mesh is given by:

A = (A+
1 −A−

1 ) +A+
2 (6)

where,

A+
1 =

∫
C+

1

dΩ, A−
1 =

∫
C−

1

dΩ, and A+
2 =

∫
C+

2

dΩ. (7)

Observe that all the areas A+
1 , A

−
1 , and A+

2 are positive in value, but the area of the negative component is

subtracted from the area of the positive component.

In the same vein, we propose a modified energy functional where the positive and negative components

are treated separately and the contribution of the negative component is subtracted. Moreover, the piecewise

compatibility constraint (Eq. 4) is incorporated as follows:

Π̃ =

∫
C+

1

(
1

2

(
∇u+

1

)⊤
D

(
∇u+

1

)
− u+

1 b

)
dΩ −

∫
C−

1

(
1

2

(
∇u−

1

)⊤
D

(
∇u−

1

)
− u−

1 b

)
dΩ

+

∫
C+

2

(
1

2

(
∇u+

2

)⊤
D

(
∇u+

2

)
− u+

2 b

)
dΩ −

∑
j∈1,2

∫
∂Eq

j

ujqdS +

∫
F1

λ1Ju1KdΩ. (8)

Observe that: (1) the first three terms involve integration over the components C+
1 , C−

1 , and C+
2 respectively,

(2) the contribution from the component C−
1 is subtracted since it is a negative component, (3) the fourth

term is the standard boundary flux and, (4) the last term incorporates the compatibility constraint over the

folds F1 via Lagrange multiplier field λ1 (the use of Lagrange multipliers to impose constraints is common

in several finite element formulations [40, 41, 42, 43, 44, 45]).

The potential energy (Eq. 8) can be easily generalized for a mesh containing M elements, identified

by the set I = {1, . . . ,M}. Each element Ej has an associated positive C+
j component (and a negative

component C−
j if the element is tangled). The tangled elements are identified by the index Itangled. The

energy functional can therefore be written as:

Π̃ =
∑
j∈I

∫
C+

j

(
1

2

(
∇u+

j

)⊤
D

(
∇u+

j

)
− u+

j b

)
dΩ −

∑
j∈Itangled

∫
C−

j

(
1

2

(
∇u−

j

)⊤
D

(
∇u−

j

)
− u−

j b

)
dΩ

−
∑
j∈I

∫
∂Eq

j

ujqdS +
∑

j∈Itangled

∫
Fj

λjJujKdΩ. (9)

Taking the variation with respect to the two fields u and λ, we arrive at the following weak form:

Find u ∈ H1 and λ ∈ L2 such that

a(δu, u) + b(δu, λ) = f(δu), ∀δu ∈ H1
0 (10a)

b(δλ, u) = 0, ∀δλ ∈ L2 (10b)
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where,

a(δu, u) =
∑
j∈I

∫
C+

j

(
∇δu+

j

)⊤
D∇u+

j dΩ−
∑

j∈Itangled

∫
C−

j

(
∇δu−

j

)⊤
D∇u−

j dΩ

b(δu, λ) =
∑

j∈Itangled

∫
Fj

JδujKλj dΩ (11)

f(δu) =
∑
j∈I

∫
C+

j

δu+
j bdΩ−

∑
j∈Itangled

∫
C−

j

δu−
j bdΩ+

∑
j∈I

∫
∂Eq

j

δujqdS. (12)

We now approximate the primary field u and the Lagrange multiplier field λ as follows:

uj ≈ N jûj , λj ≈ Nλλ̂. (13)

Adopting a (Bubnov-) Galerkin method leads to the following system of equations: K C

C⊤ 0

û

λ̂

 =

f

0

 (14)

where the stiffness matrix is given by:

K =
∏
j∈I

∫
C+

j

(
∇N+

j

⊤
D∇N+

j

)
dΩ −

∏
j∈Itangled

∫
C−

j

(
∇N−

j

⊤
D∇N−

j

)
dΩ, (15)

the forcing term is given by:

f =
∏
j∈I

∫
C+

j

N⊤
j b dΩ−

∏
j∈Itangled

∫
C−

j

N−
j

⊤
b dΩ+

∏
j∈I

∫
∂Eq

j

N⊤
j q dS, (16)

and, the constraint matrix by:

C =
∏

j∈Itangled

∫
Fj

JN jK⊤NλdΩ =
∏

j∈Itangled

∫
Fj

(
N+

j −N−
j

)⊤
NλdΩ. (17)

Observe that the Lagrange multiplier field only needs to be square integrable since its gradient does not

appear in the formulation. For Q9 elements, the primary field u is approximated using standard biquadratic

functions N j , while λ is approximated using linear functions Nλ. This choice of the Nλ satisfies the

following conditions [9]: (a) C is full-ranked and (b)

nu ≥ nλ (18)

where, nu and nλ are the number of unknown degrees of the primary variable (u) and the Lagrange variable

(λ) respectively.

4. Implementation

We now discuss the implementation of the proposed methodology.
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4.1. Computing the Stiffness Matrix

Consider the two-element mesh shown in Fig. 3. Recall that the stiffness matrix is given by:

K =

∫
C+

1

(
∇N+

1

⊤
D∇N+

1

)
dΩ −

∫
C−

1

(
∇N−

1

⊤
D∇N−

1

)
dΩ +

∫
C+

2

(
∇N+

1

⊤
D∇N+

1

)
dΩ (19)

Since C+
2 = E2, the last term is simply the standard element stiffness matrix for that element, and can be

computed numerically via standard Gauss integration, i.e.,

k2 =

1∫
−1

1∫
−1

(
J−1∇ξN2

)⊤
D

(
J−1∇ξN2

)
|J |dξ1dξ2. (20)

On the other hand, the first two terms in Eq. 19 are associated with the tangled element E1. Recall

that C+
1 (C−

1 ) gets mapped to the J+ (J−) region of the parametric space (see Fig. 2c). Accordingly, the

differential area for the positive component is given by:

dΩ = dx1dx2 = |J |dξ1dξ2 (21)

On the other hand, the differential area for the negative component is given by:

dΩ = dx1dx2 = −|J |dξ1dξ2 (22)

Observe that since the Jacobian determinant |J | is negative, a minus sign ensures that the area remains

positive.

Accordingly, the first two terms of Eq. 19 become:∫
C+

1

(
∇N+

1

⊤
D∇N+

1

)
dΩ =

∫
J+

(
J−1∇ξN

+
1

)⊤
D

(
J−1∇ξN

+
1

)
|J |dξ1dξ2 (23)

and ∫
C−

1

(
∇N−

1

⊤
D∇N−

1

)
dΩ = −

∫
J−

(
J−1∇ξN

−
1

)⊤
D

(
J−1∇ξN

−
1

)
|J |dξ1dξ2 (24)

When these two terms are grouped together, they represent the entire parametric space of the tangled element

which enables us to use the standard Gauss integration; albeit, with the sign of the Jacobian determinant

included, i.e., one should not use the absolute value of the Jacobian determinant but its signed value.

k1 =

1∫
−1

1∫
−1

(
J−1∇ξN1

)⊤
D

(
J−1∇ξN1

)
|J |dξ1dξ2. (25)

Thus, to obtain the elemental stiffness matrix in i-TFEM, the standard Gauss integration can be employed

for both regular and tangled elements, but the sign of the Jacobian must be retained. If all the Gauss

points lie in the positive Jacobian region, then standard FEM is valid and there is no need for additional

constraints. In many finite element implementations, the absolute value of the Jacobian determinant is used,

but this will lead to erroneous results. In addition, the constraint matrix must be included as discussed next.
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4.2. Constraint Enforcement

Next, consider the constraint matrix C in Eq. 17. For the two-element mesh (Fig. 3a), the non-zero

entries of the kth column of C are given by

Ck =

∫
F1

JN1 (p)K⊤(Nλ)k (p) dΩ (26)

where p denotes a point within the fold and (Nλ)k is the kth entry of Nλ. This entails integrating over

the fold, and can be done by triangulating the fold and evaluating the integrand at quadrature points for

each triangle; see [39]. However, this is cumbersome and computationally expensive. To overcome this, an

alternate method based on point collocation [9, 46] is employed here. The point collocation method leads to

algebraic equations that arise in several finite element formulations [47, 48, 49, 50, 51], and will be discussed

next.

Consider the 2-element mesh in Fig. 3a with one tangled element. Recall that the piecewise compatibility

constraint (Eq. 3) implies that for any point p inside the fold:

JN1 (p)Kû1 = 0 i.e.,
(
N+

1 (p)−N−
1 (p)

)
û1 = 0 (27)

Consider three noncollinear points (p1, p2, and p3) located in the folded region (see Fig. 4).

Fold F1

Figure 4: Three noncollinear points within the fold.

One can evaluate JN1 (·)K at these points in order to construct a matrix C such that the non-zero entries

of the kth column of C are given by

Ck = JN1 (pk)K
⊤ (28)

From Eq. 27

C
⊤
û = 0. (29)

While the two matrices C and C are different, observe the similarities: (a) their columns are linearly

independent, i.e., rank(C) = rank(C) = nλ (= 3 in this case), and (b) they both satisfy the piecewise

compatibility constraints.

We, therefore, replace the C matrix in Eq. 14 with C to obtain a different set of Lagrange multipliers

λ̄. This is acceptable since λ itself is not of importance here. Thus the integration over the fold can be

completely avoided.
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In short, for Q9 elements, the number of constraint equations is equal to 3 × degree(s) of freedom

per node; these are constructed by evaluating Eq. 28 at three sample points lying in the fold. For 2D

scalar (Poisson) and 2D vector (elasticity) problems, the number of constraint equations required is 3 and 6

respectively.

4.3. Multiple Overlaps

Thus far, the fold was shared by only one neighboring non-tangled element. However, in practice, the

fold may be shared by multiple non-tangled elements as illustrated in Fig. 5. In this case, three non-tangled

elements E2, E3, and E4 overlap with element E1 to result in the folded region F1. However, this does not

change the methodology, i.e., the stiffness matrices and constraint matrix are computed as before: (1) the

standard stiffness matrices k1,k2,k3,k4 are computed for all elements using standard Gauss integration,

and (2) the constraint matrix is computed using the entire fold F1. The constraint matrix is constructed by

evaluating Eq. 28 at (any) three points within the entire folded region.

E2

E3
E4

E1

Figure 5: Fold shared by multiple non-tangled elements.

4.4. Second order triangle elements

Now consider a second order triangle (T6) element with 6-nodes (Fig. 6a). If the mid-node (p) is moved

towards the left, we obtain an element with a large curvature as shown in Fig. 6b. The parametric space

of this element is shown in Fig. 6c. Once the element gets tangled, the point p in the physical space can

be mapped to points a and b in the negative and positive parametric region respectively. In other words,

mapping is non-invertible similar to the tangled Q9 elements discussed earlier.
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Figure 6: Quadratic triangular (T6) element (a) without tangling (b) with tangling. (c) Parametric space for the tangled

element.

However, this can be handled the in same manner as in Q9 elements. The element stiffness matrices are

computed while retaining the sign of the Jacobian. However, the number of constraint equations is two for

T6 elements (as opposed to three for Q9 elements); this ensures that nu ≥ nλ. Thus, to obtain the constraint

matrix, we consider two points in the tangled region and evaluate Eq. 28 at these points.

4.5. Nonlinear Analysis

Next, we consider the finite elasticity problem with geometric and material nonlinearities. We employ the

total Lagrangian formulation to model the deformation. Using finite element discretization, the structural

equilibrium is given as

R(û) = f int − fext = 0 (30)

where, fext is the external nodal load vector and f int is the internal nodal load vector given as:

f int =

∂
∫
Ω

Ψ(û)dΩ

∂û
(31)

where Ψ is the hyperelastic strain energy density function discussed later.

In i-TFEM, the constraint matrix C is incorporated into the equilibrium equation (Eq. 30) via the

Lagrange multipliers λ̂ as follows:

R(û) +Cλ̂ = 0 (32)

C⊤û = 0 (33)

Due to the nonlinear nature of the problem, the equilibrium state is solved using the Newton-Raphson

method where the incremental linear system of equations is given as:

Kt C

C⊤ 0

∆ûn

∆λ̂
n

 =

−
(
R+Cλ̂

)
0

 . (34)
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where Kt is the standard tangent stiffness matrix defined as

Kt

(
ûn−1

)
= ∂R(ûn−1)/∂û. (35)

Then the displacements and Lagrange multipliers are updated via:

ûn = ∆ûn + ûn−1 and λ̂
n
= ∆λ̂

n
+ λ̂

n−1
. (36)

When the mesh is not tangled, i-TFEM reduces to the standard FEM. Thus, Eq. 34 becomes:

Kt∆ûn = −R. (37)

A detailed discussion on the finite elements for geometric and material non-linearities can be found in

[52, 53].

In Eq. 34, Kt and R are computed in the same manner as in the standard FEM, albeit, including the

sign of the Jacobian determinant. The constraint matrix C can be obtained by evaluating the algebraic

equations as described in Section 4.2.

5. Numerical Experiments

In this section, i-TFEM is demonstrated by solving 2D Poisson and elastostatics problems over various

tangled meshes. Numerical experiments are conducted under the following conditions:

� The implementation is in MATLAB R2022a, on a standardWindows 10 desktop with Intel(R) Core(TM)

i9-9820X CPU running at 3.3 GHz with 16 GB memory.

� Standard quadrature (3 × 3) is employed for all the elements.

� In standard FEM, the absolute value of Jacobian determinant is employed (to be consistent with

commercial FEM systems such as ANSYS).

To study the rate of convergence, we define the L2 error norm as

||u− uh||L2(Ω) =

∫
Ω

|u− uh|2 dΩ

0.5

(38)

and the energy error norm as

eh = ||∇u−∇uh||E(Ω) =

∫
Ω

(
∇u−∇uh

)⊤
D

(
∇u−∇uh

)
dΩ

0.5

(39)

where u is the reference solution and uh is the solution under consideration.
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5.1. Patch Test: Poisson problem

Consider a square domain Ω = (0, 1) × (0, 1) which is discretized into four Q9 quadrilateral elements.

Since we will be carrying out a patch test, Q9 elements with straight edges are considered since regular Q9

elements with curved edges (i.e., even without tangling) will not satisfy the patch test [1, 9]. The element at

the bottom left corner is tangled as in Fig. 7. The folded region is shared by three neighboring non-tangled

elements. We pose a Poisson problem where the exact field is given by:

u(x1, x2) = x2
1 − x2

2 + 3x1 + 7x2 − 6

The corresponding Dirichlet boundary conditions are imposed on all boundary edges.

(0,0)

(1,1)

A (0.5-d, 0.5- d)

(0.5,0) (1,0)

(1,0.5)

(0,1) (0.5,1)

(0,0.5)

Figure 7: Tangled mesh with four elements; one of the elements is tangled.

To vary the extent of tangling, the position of node A is varied by the parameter d, where d = 0

corresponds to a regular mesh (4 square elements). Fig. 8a compares the L2 errors in FEM and i-TFEM by

varying d. Observe that for d > 0.25, the Jacobian determinant becomes negative at one or more quadrature

points; consequently, FEM fails to provide accurate results. On the other hand, i-TFEM achieves machine

precision accuracy even under extreme tangling. Fig. 8b shows that i-TFEM and FEM exhibit comparable

condition numbers.
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Figure 8: Comparison of i-TFEM and FEM for four-element mesh: (a) L2 error vs. d, (b) condition number vs. d.

5.2. Patch Test: Elasticity problem

Next, we consider a cantilever subject to the loading shown in Fig. 9 [9]. The material parameters are:

Young’s modulus = 1000 and Poisson’s ratio = 0.3; the exact displacements are quadratic fields [9].

F = 15 

2

O (0,0) x1

x2

A (10,1)

10

B (10,0)

Figure 9: Cantilever bending problem.

The plane stress problem is solved over a tangled mesh shown in Fig. 10, where, once again, the degree

of tangling is controlled by a parameter d.

Q

P

R

xR = (0.5+ d)(xP -  xQ) + xQ

Figure 10: Tangled mesh with ten elements; five of the elements are tangled.

Fig. 11a and 11b illustrate the errors in the vertical and horizontal displacements at points A and

B respectively, using FEM and i-TFEM. As in the previous example, i-TFEM achieves machine precision

accuracy while classic FEM fails.
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Figure 11: Comparison of i-TFEM and FEM for cantilever problem: (a) Error in vertical displacement at point A vs. d (b)

Error in horizontal displacement at point B vs. d.

Fig. 12 shows that FEM and i-TFEM exhibit comparable condition numbers.
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Figure 12: Condition number of FEM and i-TFEM for cantilever problem.

5.3. Cantilever with Parabolic Loading: Q9 elements

Next, we consider a plane stress cantilever problem with a parabolic vertical load P (per unit length).

The load is distributed over right edge of the cantilever and P = 1000, L = 48 and H = 12; see Fig. 13a. The

material parameters are: Young’s modulus = 3 × 107 and Poisson’s ratio = 0.3. The boundary conditions
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are applied as shown in Fig. 13a. The exact solution lies outside the FEM space and is given as [54].

u1 =
Px2

6EI

[
(6L− 3x1)x1 + (2 + ν)

(
x2
2 −

H2

4

)]
u2 = − P

6EI

[
(L− x1) 3νx

2
2 + (4 + 5ν)

H2x1

4
+ (3L− x1)x

2
1

]
where I = H3/12. Example of a regular mesh containing elements with curved edges is shown in Fig. 13b.

B (0,-6)
P

HO (0,0) x1

x2

C (48,0)

L

(a)

(b)

Figure 13: (a) Cantilever with parabolic loading and (b) the regular mesh.

To study the convergence for the cantilever beam problem, various tangled meshes are constructed as

shown in Fig. 14.

(a) (b)

Figure 14: Sample meshes for convergence study with element size h equal to (a) 6 (b) 3.

Fig. 15a and Fig. 15b plot the L2 and energy error norm with respect to mesh size h for the regular

mesh and tangled mesh (solved using FEM and i-TFEM) containing curved elements. Observe that the

convergence rates over tangled mesh obtained via i-TFEM and over the regular mesh are similar.
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Figure 15: (a) L2 and (b) energy norm errors as a function of the element size h for cantilever problem with curved Q9 elements.

Convergence rates are provided in parenthesis.

5.4. Cantilever with Parabolic Loading: Quadratic triangular (T6) elements

Next, we consider the mesh with quadratic triangular elements. An example of a regular mesh and a

tangled mesh containing elements with curved edges is shown in Fig. 16.

(a) (b)

Figure 16: (a) Regular and (b) tangled meshes containing T6 elements with curved sides; h = 6.

To study the convergence properties of i-TFEM, the cantilever problem with parabolic loading previously

discussed in Section 5.3 is solved over the regular and tangled mesh using i-TFEM and FEM. Fig. 17a and

Fig. 17b plot the L2 and energy error norms vs mesh size h. Once again, the convergence rate of i-TFEM

over the tangled mesh is similar to that of FEM over the regular mesh.
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Figure 17: (a) L2 and (b) energy norm errors as a function of the element size h for cantilever problem with T6 elements. The

convergence rates are provided in the brackets.

5.5. Mesh Morphing with Q9 elements

Consider mesh morphing where the mesh is updated under geometric changes by simply moving the mesh

nodes according to a specified rule [21] (rather than regenerating the mesh which can change the underlying

mesh topology). As an example, consider the domain in Fig. 18a, with the initial mesh as illustrated in

Fig. 18b.

(a) (b)

Figure 18: (a) Domain and (b) Initial mesh containing Q9 elements.

The inner boundary is now rotated in a counterclockwise direction by an angle β, and the mesh is

morphed as follows. All nodes except the outer boundary nodes are rotated about the center such that the

angle of rotation exponentially increase from 0◦ to β as nodes get closer to the void. Fig. 19 illustrates the

morphed mesh for β = 70◦. Observe that some quads (shown in red) are tangled, i.e., the mesh is tangled.
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Figure 19: Morphed mesh for β = 70◦.

We solve the Poisson problem using i-TFEM with the zero (homogenous) Dirichlet condition applied on

the entire boundary and the source term set to b(x1, x2) = 1. Fig. 20 illustrates the post-processed results

for β = 0◦, 40◦, and 70◦.

0.0300.000 0.0200.0150.0100.005 0.025

β = 0o β = 40o β = 70o

Figure 20: Post-processed solution using i-TFEM for morphed meshes.

5.6. Disc with T6 elements

Consider the T6 mesh illustrated earlier in Fig. 1d where two (out of 295) elements, shown in red color,

are tangled. Though it is possible to untangle this mesh [22], i-TFEM completely eliminates the need for

untangling. Here, we compare the results for tangled and untangled meshes.

An elastostatics plane stress problem is set up with the following boundary conditions: homogeneous

Dirichlet boundary condition is applied on the outer boundary while a counterclockwise torque = 1× 109 is

applied on the innermost circular boundary. The problem is solved using i-TFEM over the tangled mesh with

material parameters E = 2×1011 and Poisson’s ratio = 0.3. Fig. 21a and Fig. 21b illustrate the displacement

field for the tangled mesh (using i-TFEM) untangled mesh. i-TFEM required 1.200 milliseconds while FEM
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required 1.199 milliseconds to solve the problem.
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Figure 21: (a) Displacement field obtained using i-TFEM (c) Displacement field using untangled mesh. Both meshes were

provided by the authors of [22].

5.7. Nonlinear Punch Problem

To evaluate the performance of i-TFEM in the presence of geometric and material nonlinearities, we

consider the punch problem [55, 56, 33, 57]. A rectangular block is subject to a vertical load p (per unit

length) uniformly distributed over the top left half of the block where p = 1000 and H = 1; see Fig. 22 [33].

The top and left sides of the block are fixed in the horizontal direction, while the bottom is fixed in the

vertical direction. The domain is meshed using Q9 elements with curved edges. The mesh size is governed

by the index N where the number of elements in the regular mesh is 2N+1 × 2N . The regular and tangled

meshes with N = 2 are shown in Fig. 22. Observe the elements in both meshes have curved edges.

H 

p 

H 

H 

A

Figure 22: Initial configuration of the punch problem with mesh size N = 2 ≡ 8× 4 and the tangled Q9 mesh.

The problem is solved over these meshes (using i-TFEM and FEM) assuming plane strain condition and

hyperelastic material model. Specifically, we employ the compressible isotropic generalized neo-Hookean
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material model where the strain energy density is given by [52, 53]:

ΨGNH (u) =
µ

2

(
J
−2/3
F trb− 3

)
+

K

2
(JF − 1)

2
. (40)

Here, JF = detF , b = FF⊤ is the left Cauchy-Green deformation tensor, and F is the deformation gradient.

Here, µ = 500 and K = 1700 are the material parameters (equivalent to shear and bulk moduli respectively

in the small strain limit). Deformed configurations for untangled and tangled obtained (via i-TFEM) meshes

are shown in Fig. 23.
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Vertical
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Figure 23: Deformed configuration for (a) regular mesh via FEM and (b) tangled mesh via i-TFEM for the punch problem.

Further, a convergence study was then carried out as N was varied. The vertical displacement u2 at the

top-left corner point A for the two methods is plotted against the mesh index N in Fig. 24. One can observe

that the solutions obtained by FEM over the regular mesh and i-TFEM over the tangled mesh converge to

the same solution while standard FEM over the tangled mesh converges to an incorrect solution.
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Figure 24: Convergence study for the punch problem.

5.8. Need for constraints

Recall that i-TFEM requires enforcement of the constraint equations. We emphasize the importance of

constraints through illustrative examples. Consider the nonlinear elasticity problem discussed in Section 5.7.

If the problem is solved without the constraints, Newton-Raphson diverges.
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As another example, consider a long hollow cylinder with internal radius a = 1 and external radius b = 4;

see Fig. 25a. A uniform pressure p = 1 is applied to the inner surface (r = a) and the cylinder deforms

in plane strain. Let the Poisson’s ratio, ν = 0.3 and Young’s modulus, E = 2.6. Due to the axisymmetric

nature of the problem, only a quarter of the cylinder is modeled. The analytical solution is as follows [54]:

u =
p(1 + ν)a2b2

E(b2 − a2)

(
1

r
+

r(1− 2ν)

b2

)
er

A typical 4-node quadrilateral mesh, shown in Fig. 25b, is constructed by using the two-element mesh as the

basic repeating unit.

a
p

b

(a)

r = 1, θ = 0o r = 4, θ = 0o

r = 1 
θ = 90o

r = 4 
θ = 90o

(r, 
θ + Δθ) 

(r, θ) 

(r + Δr, θ) 

(r + 0.2Δr,
 θ + 0.7Δθ) 

(r + Δr, θ + Δθ) 

(b)

Figure 25: (a) Cross-section of the pressurized cylinder (b) A typical mesh with tangled elements.

Fig. 26a and Fig. 26b respectively illustrate the radial stress distribution, with and without compatibility

constraints. Similarly, Fig. 27a and Fig. 27b respectively show the displacement field obtained with and

without incorporating the compatibility constraints. The solutions are plotted over the undeformed mesh.

The results produced by the two methods are quite different; the one without constraints leads to unac-

ceptable results; Fig. 28 illustrates the deformed mesh. Thus, erroneous or even nonsensical results may be

produced in the absence of constraint equations.
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Figure 26: Radial stress distribution for the pressurized cylinder problem (a) with and (b) without the compatibility constraints

plotted over underformed mesh.
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Figure 27: Displacement field for the pressurized cylinder problem (a) with and (b) without the compatibility constraints plotted

over un-deformed mesh.
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Figure 28: Deformed configuration for the pressurized cylinder problem without the compatibility constraints.

6. Conclusions

When the mesh contains tangled elements, the parametric mapping is non-injective, leading to erroneous

results in standard FEM. The paper presents a novel method for handling such elements. The proposed

isoparametric tangled finite element method (i-TFEM) is demonstrated for 9-node quadrilateral and 6-node

triangular elements. The features of the proposed method are:

1. The variational functional can be obtained by modifying the standard potential energy functional

by (a) treating the positive and negative components separately and (b) incorporating compatibility

constraints. Consequently, the full-invertibility requirement is replaced by piecewise invertibility.

2. The stiffness matrix can be computed as in standard FEM, but the sign of the Jacobian determinant

must be retained during integration.

3. To enforce compatibility over the fold, a constraint matrix C must be constructed by sampling the

shape functions at nc points within the fold, where nc = 2 for a T6 element and nc = 3 for a Q9

element. Thus, every tangled element adds nc degrees of freedom for 2D scalar problems and 2nc for

2D vector (elasticity) problems.

4. Consequently, to implement i-TFEM, only two changes need to made to an existing FEM code: (a)

retain the Jacobian determinant sign and (b) incorporate the algebraic constraint equations. The

symmetry of the resulting linear system of equations is retained.

5. Finally, i-TFEM reduces to the standard FEM when the mesh is regular.

Further, numerous examples are presented to demonstrate the effectiveness of the proposed method.

Linear and nonlinear elasticity as well as Poisson problems are solved over non-tangled and tangled meshes

using i-TFEM and FEM. From the numerical experiments, we observe that:
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6. The accuracy and convergence rate (with respect to L2 and energy error norms) of i-TFEM over a

tangled mesh is comparable to that of the standard FEM over a non-tangled mesh. On the other hand,

FEM over tangled mesh results in inaccurate results.

7. For nonlinear analysis, i-TFEM over the tangled mesh converges to the same solution as obtained over

the non-tangled mesh.

8. FEM and i-TFEM exhibit comparable condition numbers.

9. The time required for i-TFEM is almost identical to that for standard FEM in practical scenarios.

Future work will focus on extending i-TFEM to higher order 3D elements [23, 15, 58, 22] as well as isoge-

ometric analysis [59] where tangling is known to occur [60, 61, 20], and leads to erroneous results. While

the condition numbers for i-TFEM and FEM were found to be comparable, a detailed stability analysis is

desirable, and will be carried out in the future.
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Appendix A. Identification of the positive and negative Jacobian regions

While the proposed i-TFEM implementation does not require explicit identification of the J+ and J−

regions, for completeness, we provide here a procedure for identifying these two regions.

Recall that the determinant of the Jacobian associated with isoparametric mapping is given by:

|J | =

∣∣∣∣∣∣ x(ξ, η),ξ y(ξ, η),ξ

x(ξ, η),η y(ξ, η),η

∣∣∣∣∣∣ (A.1)

When an element becomes tangled, the parametric space can be decomposed into a positive |J | region and

a negative |J | region, denoted as J+ and J− respectively. The two regions are divided by the |J | = 0 curve,

i.e., we can identify the J+ and J− regions by computing the |J | = 0 curve.

To illustrate, we consider a 4-noded bilinear quadrilateral (Q4) element for simplicity. Let the element

be defined by the vertices [(x1, y1), (x2, y2), (x3, y3), (x4, y4)]. Given the bilinear mapping, the Jacobian is

given by

J =
1

4

 η − 1 1− η 1 + η −(1 + η)

ξ − 1 −(1 + ξ) 1 + ξ 1− ξ

 x1 x2 x3 x4

y1 y2 y3 y4

T

The Jacobian determinant can be expressed as a straight line:

|J | = det(J) = c0 + c1ξ + c2η (A.2)
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where,

c0 = [(x1 − x3) (y2 − y4)− (x2 − x4) (y1 − y3)]/8,

c1 = [(x3 − x4) (y1 − y2)− (x1 − x2) (y3 − y4)] /8,

c2 = [(x2 − x3) (y1 − y4)− (x1 − x4) (y2 − y3)] /8.

Thus, the two regions can be computed easily.

For a 9-node quadrilateral (Q9) element, the |J | = 0 is no longer a straight line. However, it is possible

to derive an expression for this curve. For example, one can show that, for the tangled Q9 element in Fig. 2b,

the |J | = 0 curve is given by

0.0605ξ2η2 − 0.0055
(
ξ2η + ξη2

)
− 0.0129

(
ξ2 + η2

)
− 3.1762 (ξ + η) + 1.2898ξη + 1.2127 = 0.

Consequently, one can identify the two regions J+ and J−.
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