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Abstract

Solving linear systems of equations is an important problem in engineering. Many
quantum algorithms, such as the Harrow-Hassidim-Lloyd algorithm and the box
algorithm, have been proposed for solving such systems.
The focus of this article is on improving the efficiency of the box algorithm. The
basic principle behind this algorithm is to transform the linear system into a
series of quadratic unconstrained binary optimization (QUBO) problems, which
are then solved on annealing machines.
The computational efficiency of the box algorithm is entirely determined by the
number of iterations, which, in turn, depends on the box contraction ratio, typi-
cally set to 0.5. Here, it is shown through theoretical analysis that a contraction
ratio of 0.5 is sub-optimal and that one can achieve a computational speed-up
with a contraction ratio of 0.2. This is confirmed through numerical experiments
where a computational speed-up between 20% to 60% is observed when the
optimal contraction ratio is used.

Keywords: QUBO; Linear system of equations; Quantum annealing; Simulated
annealing; D-WAVE; Quantum computing
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1 Introduction

Solving least squares problems and linear systems of equations are of utmost impor-

tance in science and engineering. Many algorithms have been proposed to solve such

problems on classical computers. Quantum computers have recently been proposed

as an alternative since they can potentially accelerate the computation [1, 2]. In

particular, the Harrow-Hassidim-Lloyd (HHL) algorithm is a landmark strategy for

solving linear systems of equations on gate-based quantum computers. In theory, it

offers an exponential speed-up over classical algorithms [3], and it has been further

improved recently [4–9]. However, due to the accumulation of errors in current noisy

intermediate-scale quantum (NISQ) computers [10], the HHL algorithm and its vari-

ants are limited, in practice, to 4×4 systems [9, 11, 12]. Furthermore, while extracting

the final solution is impractical, one can always extract a feature of the solution vector.

[13].

In parallel, quantum annealing machines, such as the D-Wave systems with several

thousand qubits [14], have also been proposed for solving such problems since they

are less susceptible to noise [15, 16]. The basic principle is to convert the least squares

or linear system into a series of quadratic unconstrained binary optimization (QUBO)

problems. For example, O’Malley and Vesselinov solved the least-squares problem

using a finite-precision qubit representation [17]. Borle and Lomonaco conducted a

theoretical and numerical analysis of this approach [18, 19].

This article focuses on solving linear systems of equations via the QUBO formula-

tion. A linear system problem can always be converted into a minimization problem

[18], and consequently, into a series of QUBO problems. However, current quantum

annealing machines are only equipped with about 5600 qubits (at the time of writing),

with additional restrictions on connectivity [14, 20–22]. This implies that (1) the size

of the linear system is still limited, and/or (2) the solution can only be computed with

limited precision. The first limitation can potentially be addressed through a hybrid
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Gauss-Seidel strategy [23], where the linear system is reduced to a set of smaller but

coupled subsystems, which are solved iteratively. The second limitation typically relies

on the iterative box algorithm [24], the main focus of this article. Alternative iterative

methods are proposed in [25] and [26].

In the box algorithm, the number of iterations strongly depends on the box con-

traction ratio, i.e., the ratio by which the box size reduces under certain conditions (see

Section 2). This ratio is typically set to 0.5 [24]. It is shown here, through theoretical

analysis, that a contraction ratio of 0.5 is sub-optimal, and a computational speed-

up with a contraction ratio of (approximately) 0.2 can be achieved. This is confirmed

through numerical experiments using simulated and quantum annealing.

2 Background

2.1 QUBO Formulation

Consider the following linear system of equations:

Ax = b (1)

whereA is a d×dmatrix. IfA is positive-definite (assumed to be true in the remainder

of the article), then solving Eq. (1) is equivalent to minimizing the potential energy:

min
x

Π =
1

2
xTAx− xTb (2)

Each real component xj is represented using qubit variables to solve this on a quantum

annealing machine. A well-known strategy is the two’s complement radix represen-

tation [18, 19]; for example, a scalar variable x can be represented using m qubits

as:

x = −q12m−1 +

m∑
i=2

qi2
i−2 (3)
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Since the number of qubits is often limited in a quantum machine, it is common to

let m = 2, leading to:

x = −2q1 + q2 (4)

Of course, this can only capture the numbers {−2,−1, 0, 1}. However, one can easily

extend this to a wide range of real numbers through scaling L and offset c via (see

Section 2.2 for further explanation):

x = c+ L(−2q1 + q2) (5)

This is often called the box representation [24]. Furthermore, one can easily generalize

this to arbitrary dimension d via:

x = c+ L(−2q1 + q2) (6)

where q1 and q2 are qubit vectors of length d, i.e., a total of 2d qubits is used to

capture x. Thus, a d-dimensional system is associated with 4d total states. This is

illustrated schematically in Fig. 1 for d = 2.

Fig. 1: The box representation for d = 2, where c is the current center of the box and
L is the size of the box; the cross-lines centered around c help visualize the translation
and contraction discussed below.
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Since x is linear in q1 and q2, substituting Eq. (6) into Eq. (2) leads to a quadratic

unconstrained binary optimization (QUBO) problem:

min
q={q1,q2}

Π =
1

2
qTQ′q+ qT r (7)

where an entry Q′
ij represents coupling between the ith and jth qubit. Furthermore,

since the qubit variables can only take the values 0 or 1, q can be replaced with q2,

since 02 = 0 and 12 = 1 [27]. Consequently, the linear term can be absorbed into the

quadratic term [28], resulting in the standard form:

min
q={q1,q2}

Π =
1

2
qTQq (8)

where Q is symmetric.

2.2 Box Algorithm

The box algorithm is described in Algorithm 1; it exploits the QUBO formulation to

solve Eq. (1) to high precision. During each iteration of the algorithm, the center c

or scale L is updated as follows. In a particular iteration, when a QUBO problem in

Eq. 8 is solved, if a lower potential energy state than the current state is reached, c is

updated (referred to as a translation; see Fig 2a), else L is reduced by a contraction

ratio β, typically, 0.5; see Fig 2b. The iteration is then continued until L is equal to

or falls below the precision desired.
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Fig. 2: Box algorithm: (a) translation, (b) contraction.

The box algorithm (see Algorithm 1) is now described in detail since it will be

relevant for the remainder of the article. Observe in the algorithm that:

• Lines 2-7: Various quantities are initialized: (1) the center c is initialized to 0, (2)

the length L is set to 1 (see remark below), (3) the qubit vectors q1 and q2 are

created, (4) the number of translations Nt, and contractions Nt, are initialized to

0, (5) the contraction ratio β is initialized to 0.5 and (5) the potential energy is

initialized to 0.

• Line 9: The unknown vector x is represented via the qubits and the current c and L .

• Line 10: The potential energy Π is formulated.

• Line 11: The minimum value of Π and the corresponding qubit values are determined

either via simulated annealing or quantum annealing.

• Lines 12-15: If a lower energy state is found, the center is translated and Nt, the

number of translations, is incremented (see remark below).

• Lines 16-18: Else, Nc, the number of contractions, is incremented and L is reduced

by a factor of β.

• Line 20: The algorithm terminates if L is less than or equal to the desired tolerance,

or if the number of total iterations (Nt +Nc) is greater than an allowable Nallowable
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Remark on Line 3: Although L is initialized to 1, the box algorithm is robust in

that it converges for any reasonable value of L [24]. In other words, the box-algorithm

can find solutions outside the initial box but may require numerous (initial) translation

steps, i.e., a good choice for L will lead to faster convergence.

Remark on Line 12: The box algorithm is more stable, and unnecessary trans-

lations can be avoided if a small buffer is added by checking if Π∗ < Π̂(1 +

10−8).
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Algorithm 1 Box Algorithm

1: procedure BoxAlg(A, b, ϵ,Nallowable )

2: c← 0 ▷ Center of length d

3: L← 1 ▷ Initialize box size

4: q1,q2 ← Qubits(d) ▷ Create qubit arrays of length d

5: Nc = Nt = 0 ▷ Translation and contraction steps set to 0

6: β = 0.5 ▷ Contraction ratio

7: Π̂ = 0 ▷ Initial potential energy

8: repeat ▷ Until convergence

9: x← c+ L(−2q1 + q2) ▷ Symbolic expression

10: Π← 1
2x

TAx− xTb ▷ Construct QUBO

11: Π∗,q∗
1,q

∗
2 ← minimize(Π) ▷ Solve QUBO

12: if Π∗ < Π̂ then ▷ A lower energy state has been found.

13: c← c+ L(−2q∗
1 + q∗

2) ▷ Translation of box

14: Nt = Nt + 1 ▷ Update translation counter

15: Π̂ = Π∗ ▷ Update the lowest potential energy

16: else

17: L← βL ▷ Reduce box size

18: Nc = Nc + 1 ▷ Update contraction counter

19: end if

20: until (L ≤ ϵ) or (Nc +Nt > Nallowable) ▷ Termination

21: end procedure ▷ Output: solution c

A typical convergence of the box algorithm in 2D is illustrated in Fig 3. Observe

that the number of QUBO problems one must solve is equal to the total number of

iterations (N = Nt + Nc). The objective of this article is to reduce N by finding an

optimal value for β. In particular, in the next section, it is demonstrated that the

default value of β = 0.5 recommended in the literature is sub-optimal.
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Fig. 3: Typical box convergence in 2D.

3 Box Algorithm Analysis

3.1 Contraction steps

Observe that each time the box contracts, the length of the box reduces by a factor

of β, until L ≤ ϵ. Consequently, the total number of contractions, independent of the

number of translations and the linear system being solved, is given by

Nc ∼ logβ ϵ (9)

3.2 Translation steps

Although the number of contraction steps is independent of β, the number of trans-

lations depends on β. The objective is to determine an upper bound N̂t and average

estimate N t in terms of β and ϵ.

3.2.1 1D Box Algorithm

Consider one-dimensional problems that require only 2 qubits. Let Li be the length

of the box before the i-th contraction, i.e., L1 = 1, L2 = β, L3 = β2, etc. Further, at

the start of the algorithm, c = 0, and c gets updated as follows:

c← c+ Li(−2q1 + q2) (10)
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Let ni be the number of translation steps before the ith contraction. The objective is

to find an upper bound for ni.

Without loss of generality, it is assumed that the solution x∗ lies within the range

(−2, 1) for theoretical analysis, and that, during each iteration, the algorithm finds

the lowest energy solution of that particular iteration. Consider the possible sequence

of translations, starting at c = 0, before the first contraction. If there is no translation,

then n1 = 0, else, c gets updated to {−2,−1, 1}, as per Eq (10). Suppose c = −1,

corresponding to q1 = 1, q2 = 1. The solution x∗ must lie in the range (−1.5,−0.5). To

prove this, assume the contradictory, i.e., assume that x∗ < −1.5. Since x∗ is the global

minimum, Π (being a quadratic function) must be symmetric about x∗. This implies

that Π(−2) < Π(−1), since −2 is closer to x∗ than −1. However, if Π(−2) < Π(−1),

the box would have translated to c = −2 and not c = −1 in the previous step, which

is a contradiction. The same logic holds for if x > −0.5. As a result, x∗ must lie in the

range (−1.5,−0.5). Similarly, if c = −2, or c = 1, x∗ must lie in the range (−2,−1.5)

or (0.5, 1) respectively.

No further translation is possible since it would require c to translate to an inferior

solution. In other words, the box must contract in the next iteration. In summary,

n1 ≤ 1.

After this, the box will contract, and L2 = β, and x∗ must lie in the range [c −

1/2, c+1/2], where c is the updated center. Therefore, the next sequence of translations

can move the center by at most 0.5 units where each translation is at least L2 = β, as

per Eq. (10). Note that the center can also translate by −2β per Eq. (10), However,

since an upper bound for Nt is being sought, only the worst-case scenario need to

be considered. Therefore, the maximum number of translations is given by n2 ≤ 0.5
β .

After this, the box must contract, resulting in L3 = β2.

After the contraction, the solution x∗ must lie in the range [c− β
2 , c+

β
2 ], where c is

the updated center. The next sequence of translations can move the center by at most
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β/2 units and each translation is at least L3 = β2, as per Eq. (10). Consequently, the

maximum number of translations n3 ≤ (β/2)/β2 = 0.5
β . After this, the box contracts

to L4 = β3.

Repeating this logic for all Nc contractions, it follows that n1 ≤ 1 and

n2, n3, . . . , nNc
≤ 1

2β . Therefore, the total number of translation steps has the following

upper bound:

N̂t =

Nc∑
i=1

ni = 1 +
1

2β
+

1

2β
+ · · ·+ 1

2β
= 1 +

Nc − 1

2β
(11)

It is safe to assume that β ≤ 0.5 (see below for a justification).

N̂t =
Nc

2β
(12)

Combining this with Eq. (9), an upper bound on the total iterations is given by:

N̂ = N̂t +Nc =

(
1 +

1

2β

)
logβ ϵ (13)

To find the optimal value of β, the derivative of N̂ in Eq. 13 with respect to β is

set to 0. Solving this numerically, β∗ ∼ 0.232, independent of ϵ. This is illustrated in

Fig. 4. For this optimal value, one can observe a 32% reduction in the maximum box

iterations, compared to the default value of β = 0.5. Further, observe that the number

of translations increases for β > 0.5, justifying the earlier assumption.
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Fig. 4: Upper bound N̂ on the number of box iterations.

Instead of the upper bound, one can also consider the average number of trans-

lations N t. Three different scenarios exist during each translation (−1, −2, 1).

If one assumes that there is an equal probability of translating in each of these

directions (a very simplistic model), then the expected translation is given by

(|−1|+|−2|+|+1|)/3 = 4/3 (as opposed to 1 in the worse case). Consequently

N t =
3Nc

8β
(14)

Since the number of contractions remains the same:

N = N t +Nc ≈
(
1 +

3

8β

)
logβ ϵ (15)

Fig. 5 illustrates N vs β. Taking the derivative of N with respect to β and setting it

equal to 0, one can show that β∗ ≈ 0.21. For this optimal value, one can observe a

44% reduction in the average box iterations, compared to the default value of β = 0.5.
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Fig. 5: Average number of box iterations N .

3.2.2 Multi-Dimensional Problems

In this section, it is shown that the previous results in one dimension also hold in higher

dimensions. It is assumed that the solution lies in the d-dimensional hyper-rectangle

(−2, 1)d, and that during each iteration, the algorithm finds the lowest energy solution

within the desired precision.

For a d-dimensional problem, let ni,k represent the number of translations in the

kth dimension before the ith contraction. Since the dimensions are independent, ni,k

are also independent.

In order to prove this, consider the following hypothetical scenario: Before the ith

contraction, let the center translate in the first dimension until it cannot translate

anymore in this direction. Then let it translate in dimension 2, and so on. Once

dimension d is reached, this process is repeated until the box no longer can translate

in any dimension. Let ni,k be the total number of times the box contracted in each

dimension. By the premises of the box-algorithm, the box must now contract.

Following the logic from the previous section, it follows that ∀i ≥ 2,∀k, ni,k ≤ 1
2β .

However, the maximum number of translations is dictated by one or more of the

dimensions. Therefore, let ni = maxk ni,k. As a result, the upper bound on translation
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is given by

N̂t =

Nc−1∑
i=1

ni =
Nc

2β
(16)

Consequently,

N̂ =

(
1 +

1

2β

)
logβ ϵ (17)

irrespective of the number of dimensions. This is later confirmed in the next section

through numerical experiments. Similar arguments can be made for the average case.

4 Numerical Experiments

Here, several numerical experiments are carried out to validate the theoretical analysis.

The experiments rely heavily on simulated annealing (SA) since quantum annealing

(QA) is expensive today. However, a limited number of QA experiments are also carried

out. For SA, D-Wave’s Neal annealer is used; for hybrid QA, D-Wave’s LeapHybrid-

Sampler is used, and for (pure) QA, DWaveSampler, with EmbeddingComposite, is

used. For all three methods, 20 samples were used.

The QUBO problems were constructed using the pyQUBO package [28]. The

Python code used in generating the results in this section is available from the GitHub

link provided towards the end of the article.

4.1 Positive Definite Matrices

Here, random d-dimensional positive definite matrices A are generated. Further, x

must lie within [−2, 1]d, x is first generated within this range, and then the corre-

sponding right-hand-side b is constructed. The corresponding Python code is given

below:

1 B = np.random.rand(d, d)

2 A = d*np.eye(d)-(B + B.transpose ())/2

3 x = np.array([ random.uniform(-2, 1) for _ in range(d)])

14



4 b = A.dot(xExact)

Listing 1: Generating d-dimensional positive definite matrices and right-hand side.

To capture the average behavior of the box algorithm, ten instances of A and b, for

d = 2, d = 10 and d = 20 are created. Finally, for each instance, the box algorithm (see

Algorithm 1) is used to solve for x for ϵ = 10−6 and ϵ = 10−8, for various values of β.

All experiments in this section are carried out using SA. The results are summarized

in Fig. 6. Observe the following:

• All three graphs exhibit a minima around β = 0.2, independent of the dimension d

and desired accuracy ϵ.

• The number of iterations is (nearly) independent of the dimension of the problem.

• The number of iterations is closer to the theoretical prediction N in Fig. 5 than to

the upper bound prediction N̂ in Fig. 4.
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Fig. 6: Observed N vs β averaged over ten d × d problems: (a) d = 2, (b) d = 10,
and (c) d = 20.
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4.2 1D Poisson Problem

For the next experiment, a 6 × 6 matrix A that arises from a finite difference

formulation of 1D Poisson problem [29] is constructed:

1 A = np.array ([[6,-6,0,0,0,0],[-6,12,-6,0,0,0],

2 [0,-6,12,-6,0,0],[0,0,-6,12,-6,0],

3 [0,0,0,-6,12,-6],[0,0,0,0,-6,12]])

4 xExact = np.array([-np.pi/9, np.pi/11, -np.pi/20,

5 np.pi/8, 0.05* np.pi, -np.pi/5 ])

6 b = A.dot(xExact)])

Listing 2: Generating a 6-dimensional finite difference matrix and right hand side.

The results for SA, hybridQA, and QA are summarized in Figure 7. Observe that:

• The overall behavior of N vs. β is consistent with the theory.

• The hybridQA results precisely match that of SA for the three sampled points,

suggesting that D-Wave probably relied entirely on CPU for this scenario.

• QA performed poorly compared to SA or hybridQA. This is consistent with the

observations in [19]. However, even in this case, a 50% improvement in performance

can be observed for β = 0.2, compared to β = 0.5.

Fig. 7: Observed N versus β for a 1D Poisson problem.
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5 Conclusions

The box algorithm is a popular method for solving linear systems of equations via

the QUBO formulation. In this article, a theoretical analysis of the box algorithm

was carried out that suggested that a computational speed-up can be easily achieved

by making a simple modification to the algorithm. Specifically, the theory suggests

that a 43% computational speed-up can be obtained by reducing the box contraction

ratio from 0.5 to 0.2. This was confirmed through numerical experiments where a

computational speed-up between 20% to 60% was observed.

While the article focused on linear systems, the strategy can be extended to least

squares systems and other direct methods for solving linear systems via the QUBO

formulation [25]. Further, the analysis here was restricted to 2-qubit representation

of the scalar variable. The extension to the more general case needs to be investi-

gated. Finally, while current quantum annealing can only solve small linear systems

of equations [19], the rapid improvement in quantum technology holds much promise.
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