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Abstract Neural networks, and more broadly, machine learning techniques, have been recently exploited to accel-

erate topology optimization through data-driven training and image processing. In this paper, we demonstrate that

one can directly execute topology optimization (TO) using neural networks (NN). The primary concept is to use the

NN’s activation functions to represent the popular Solid Isotropic Material with Penalization (SIMP) density field.

In other words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s

activation functions; the density representation is thus independent of the finite element mesh. Then, by relying on the NN’s

built-in backpropogation, and a conventional finite element solver, the density field is optimized.

Methods to impose design and manufacturing constraints within the proposed framework are described and

illustrated. A byproduct of representing the density field via activation functions is that it leads to a crisp and differ-

entiable boundary. The proposed framework is simple to implement, and is illustrated through 2D and 3D examples.

Some of the unresolved challenges with the proposed framework are also summarized.

1 Introduction

Topology optimization (TO) is now a well established field encompassing numerous methods including Solid

Isotropic Material with Penalization (SIMP) based optimization [1], [2], [3], [4], level set methods [5], evolutionary

methods [6] and topological sensitivity methods [7] [8], [9], [10]. The variety of TO methods has not only added

richness to the field, it offers design engineers several TO options to choose from.

The objective of this paper is to explore yet another TO method that differs from the above established methods

in its construction. The proposed method relies on the popular Solid Isotropic Material with Penalization (SIMP)

mathematical formulation, but uses a neural network’s activation functions [11] to represent the SIMP density. In other

words, the density function is parameterized by the weights and bias associated with the NN, and spanned by NN’s activation

functions; the density representation is thus independent of the finite element mesh. While prior work (see Section 2) have

used neural networks (NN) to accelerate topology optimization, the objective here is to directly execute topology opti-

mization using NN. The proposed framework is discussed in Section 3, followed by a description of the algorithm in
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Section 4. In Section 5, several numerical experiments are carried out to establish the validity, robustness and other

characteristics of the method. Open research challenges, opportunities and conclusions are summarized in Section

6.

2 Literature Review

Given the objective of this paper, the literature review is limited here to recent work on exploiting NN for TO. The

primary strategy thus far is to use NN, and more broadly machine learning (ML) techniques, to accelerate TO through

data-driven training, and image processing. For example, an encoder-decoder convolutional neural network (CNN)

was used in [12] to accelerate TO, based on the premise that a large data set spanning multiple loads and boundary

conditions can help establish a mapping from problem specification to an optimized topology. The authors of [13]

also employed a CNN, but they established a mapping from intermediate TO results to the final optimized structure,

thereby once again accelerating TO. A data-driven approach for predicting optimized topologies under variable

loading cases was proposed in [14], where the binary images of optimized topologies are used as training data;

then, a feed-forward neural net was employed to predict the optimized topology under different loading condition.

In [15], the authors proposed ML models based on support vector regression and K-nearest-neighbors to generate

optimal topologies in a moving morphable component framework. Recently, a data-driven conditional generative

adversarial network (GAN) was used [16] to generate optimized topologies based on input vector specification. The

authors of [17] used a CNN trained with a data set containing optimized topologies in conjunction with a GAN to

generate optimal topologies, while the authors of [18] used a ML framework to recognize and substitute evolving

features during the optimization process thereby improving the convergence rate. An encoder-decoder framework

was proposed in [19] to learn optimized designs at various loading conditions, as a surrogate to gradient based

optimization. A recent effort that seeks to capture optimized topologies using NN is reported in [20]; they used

CNN’s to obtain an image prior of the optimized designs, and the prior was then post-processed to obtain optimized

topologies.

In this paper, instead of using NN (or broadly ML techniques) as a training/acceleration tool, we directly execute

topology optimization using NN. The primary concept is to use NN’s activation functions to represent the SIMP

based density field. Then, by relying on the NN’s backpropogation and a conventional finite element solver, the

density field is optimized. A byproduct of representing the density field via activation functions is that it leads

to a crisp and differentiable boundary, with implicit filtering. These and other characteristics of the method are

demonstrated later through numerical experiments.

3 Proposed Method

3.1 Overview

We will assume that a design domain with loads and restraints have been prescribed (for example, see Figure 1).

The objective here is to find, within this design domain, a topology of minimal compliance and desired volume. We

will also assume that the domain has been discretized into finite elements for structural analysis.

The method discussed in this paper builds upon the popular SIMP formulation for topology optimization (TO)

[1]. In particular, the TO problem is converted into a continuous optimization problem using an auxiliary density

field ρ defined over the domain. Assuming the volume constraint is active, as is typically assumed in such compli-
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Fig. 1: A classic topology optimization problem.

ance minimization problems [3], the topology optimization problem can be posed as [1], [2], [3]:

minimize
ρ

uTK(ρ)u (1a)

subject to K(ρ)u = f (1b)

∑
e

ρeve = V∗ (1c)

where u is the displacement field, K is the finite element stiffness matrix, f is the applied force, ρe is the density

associated with element e, ve is the volume of the element, and V∗ is the prescribed volume.

While the density field is typically represented using the finite element mesh, in this paper, it will be constructed

independently via activation functions associated with a neural network (NN). In other words, given any point

in the domain, the NN will output a density value; see Figure 2. Using this transformation, we convert the con-

strained optimization problem in Equation 1 into an unconstrained penalty problem by constructing a loss function

(as explained later in section 3.4). The loss function is minimized by employing standard machine-learning (ML)

techniques. The methodology and various components of the framework are described in the remainder of this sec-

tion. We note that in ML, optimization is often referred to as training, sensitivity analysis as back-propagation, and

iteration as epoch.

NN

FEA

Optimization

Loss function

x

y

r r*

Fig. 2: Overview of the proposed TOuNN framework in 2D.

3.2 Neural Network

While there are various types of neural networks (NN), we employ here a simple fully-connected feed-forward

NN [21]. The input to the network is either 2-dimensional (x, y) for 2D problems, or 3-dimensional (x, y, z) for 3D

problems; see Figure 3. The output of the NN is the density value ρ at that point. In other words, the NN is simply an
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evaluator that return the density value for any point within the domain; the value returned will depend on the weights, bias and

activation functions, as described below.

The NN itself consists of a series of hidden layers associated with activation functions such as leaky rectified lin-

ear unit (LeakyReLU) [22], [23] coupled with batch normalization [24] (this is illustrated in Figure 3 for 2D problems;

see description below). The final layer of the NN is a classifier layer with a softMax activation function that ensures

that the density lies between 0 and 1.
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Fig. 3: The architecture of the proposed neural net for 2D problems.

As illustrated in Figure 3, the NN typically consists of several hidden layers (depth); each layer may consist of

several activation functions (height). By varying these two, one can increase the representational capacity of the NN.

As an example, Figure 4 illustrates a NN with a single hidden layer of height 2. Observe that each connection within

the NN is associated with a weight, and each node is associated with an activation function and a bias. The output of

any node is computed as follows. In Figure 4, the value of z[1]1 is first computed as z[1]1 = w[1]
11 x + w[1]

21 y + b[1]1 , where

w[k]
ij is the weight associated to the jth neuron in layer k from the ith neuron in the previous layer, and b[k]j is the bias

associated with the jth neuron in the kth layer. Then, the output a[1]1 of the node is computed as a[1]1 = σ(z[1]1 ) where

σ is the chosen activation function. For example, the ReLU activation function is defined as: σ(z) ≡ max(0, z). In

this paper, we will rely on a variation of the ReLU, namely, LeakyReLU [23] that is differentiable. This and other

differentiable activation functions are supported by various NN software libraries such as pyTorch [25].
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Fig. 4: Illustration of a simple network with one hidden layer of height 2.
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The final layer, as mentioned earlier, is a softMax function that scales the outputs from the hidden layers to values

between 0 and 1. For example, in Figure 4, we have ψ
[2]
1 =

ez[2]1

ez[2]1 + ez[2]2

. The softMax function has many outputs as

inputs; however, we will use only the first output, and interpret it as the density field (ρ = ψ
[2]
1 ); the remaining

outputs are disregarded, but can be used, for example, in a multi-material setting.

As should be clear from the above description, once the activation function is chosen, the output ρ(x, y) is defined

globally, and determined solely by the weights and bias. We will denote the entire set of weights and bias by w. Thus,

the optimization problem using the NN may be posed as:

minimize
w

uTK(w)u (2a)

subject to K(w)u = f (2b)

∑
e

ρe(w)ve = V∗ (2c)

The element density value ρe(w) in the above equation is the density function evaluated at the center of the element.

3.3 Finite Element Analysis

For 2D finite element analysis, we use a regular 4 node quad element, and fast Cholesky factorization based on

the CVXOPT library [26]. For 3D, we use a regular 8 node hexahedral element, and an assembly free deflated finite

element solver [27] [28]. Note that the FE solver is outside of the NN (see Figure 2), and is treated as a black-box by

the NN. During each iteration, the density at the center of each element is computed by the NN, and is provided

to the FE solver. The FE solver compute the stiffness matrix for each element based on the density evaluated at the

center of the element. Note that, since the density function can be evaluated at multiple points within each element, it is

possible to use advanced integration schemes to compute a more accurate estimate of element stiffness matrices; this is however

not pursued in this paper. The assembled global stiffness matrix is then used to compute the displacement vector u,

and the un-scaled compliance of each element:

Je = {ue}T [K]0{ue} (3)

This will be used in sensitivity calculations as explained later on. The total compliance is given by:

J = ∑
e

ρ
p
e Je (4)

where p is the usual SIMP penalty parameter.

3.4 Loss Function

In this section, we describe how the optimization problem is solved using standard NN capabilities. While the

optimization is usually carried out using optimality criteria [29] or MMA [30], here we will rely on neural networks

(NN). NNs are designed to minimize an unconstrained loss function using built-in procedures such as Adam op-

timization [31]. We therefore convert the constrained minimization problem in Equation 1 into an unconstrained
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minimization problem by relying on the penalty formulation [32] to define the loss function as:

L(w) =
uTKu

J0 + α

(∑
e

ρeve

V∗
− 1

)2

(5)

where α is a penalty parameter, and J0 is the initial compliance of the system, used here for scaling. As described in

[32], the solution of the constrained problem is obtained by minimizing the loss function as follows. Starting from a

small positive value for the penalty parameter α, a gradient driven step is taken to minimize the loss function. Then,

the penalty parameter is increased and the process is repeated. Observe that, in the limit α → ∞, when the loss

function is minimized, the equality constraint is satisfied and the objective is thereby minimized [32]. In practice, a

maximum value of 100 is usually assigned for α [32]; the complete update scheme is described later in Algorithm 1.

Other methods such as the augmented Lagrangian [32] may also be used to convert the equality-constrained problem

into an equivalent unconstrained problem. While this paper largely focuses on an equality constrained topology

optimization problems using NN, more recently, researchers have also solved generic optimization problems with

inequality-constraints using NN [33], [34]. Adapting these techniques for TO is a topic of future research.

3.5 Sensitivity Analysis

We now turn our attention to sensitivity analysis, a critical part of any optimization framework including NN.

NNs rely on backpropagation [35] to analytically compute [36], [37], [38], [25] the sensitivity of loss functions with

respect to the weights and bias. This is possible since the activation functions are analytically defined, and the output

can be expressed as a composition of such functions.

Thus, in theory, once the network is defined, no additional work is needed to compute sensitivities; it can be

computed automatically (and analytically) via backpropogation! However, in the current scenario, the FE imple-

mentation is outside of the NN (see Figure 2). Therefore, we need to compute some of the sensitivity terms explicitly.

Note that the sensitivity of the loss function with respect to a particular design variable wi is given by:

∂L
∂wi

= ∑
e

∂L
∂ρe

∂ρe

∂wi
(6)

The second term
∂ρe

∂wi
can be computed analytically by the NN through backpropogation since the density depen-

dence on the weights is entirely part of the NN. On the other hand, the first term involves both the NN and the FE

black-box, and must therefore be explicitly provided. Note that:

∂L
∂ρe

=
1
J0

∂

∂ρe
(uTKu) +

2αve

V∗

(∑
k

ρkvk

V∗
− 1

)
(7)

Further, recall that [39], [3]:
∂

∂ρe
(uTKu) = −pρ

p−1
e Je (8)

where Je is the element-wise un-scaled compliance defined earlier. Thus one can now compute the desired sensitivity

as follows:

∂L
∂wi

=
1
J0

[
− p ∑

e
ρ

p−1
e Je

∂ρe

∂wi

]
+

[
2α

V∗

(∑
k

ρkvk

V∗
− 1

)
∑

e

∂ρe

∂wi
ve

]
(9)
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Due to the compositional nature of the NN, the gradient is typically stabilized using gradient-clipping [40].

4 Algorithm

In this section, the proposed framework is summarized through an explicit algorithm. We will assume that the

NN has been constructed with a desired number of layers, nodes per layer and activation functions. Here, we use

pyTorch [25] to implement the NN. The weights and bias of the network are initialized using Glorot normal initial-

ization [41].

The first step in the algorithm is to sample the domain at the center of each element; this is followed by the

initialization of the penalty parameter α and the SIMP parameter p. In the main iteration, the element densities are

computed using the NN using the current values of w. These densities are then used by the FE solver to solve the

structural problem, and to compute the un-scaled element compliances Je defined in Equation 3. Further, in the first

iteration, a reference compliance J0 is also computed for scaling purposes. Then, the loss function is computed using

Equation 5 and the sensitivities are computed using Equation 9. The weights w are then updated using the built-in

optimizer (here Adam optimizer). This is followed by an update of the penalty parameter α. Finally, we use the

continuation scheme where the parameter p is incremented to avoid local minima [42], [43]. The process is then

repeated until termination. In typical mesh-based density optimization, the algorithm terminates if the maximum

change in element density is less than a prescribed value. Here, since the density is a globally function, the algorithm

is set to terminate if the percentage of grey elements (elements with densities between 0.05 and .95) εg = Ngrey/Ntotal

is less than a prescribed value. Through experiments, we observed that this criteria is robust and consistent with the

formulation.

Algorithm 1 TOuNN

1: procedure TOPOPT(NN, Ωh, V∗) . NN, discretized domain, desired vol
2: x = {xe, ye}e∈Ωh or {xe, ye, ze}e∈Ωh . center of elements in FE mesh; optimization input
3: epoch = 0; α = α0; p = p0 . Penalty factor initialization
4: J0 ← FEA(ρ = v∗f , Ωh) . FEA with uniform gray
5: repeat . Optimization (Training)
6: ρ = NN(x) . Call NN to compute ρ at p; (Forward propagation)
7: Je ← FEA(ρ, Ωh) . Solve FEA

8: L =
∑
e

ρ
p
e Je

J0
+ α

(
∑
e

ρeve

V∗ − 1
)2

. Loss function

9: Compute ∇L . Sensitivity(Backward Propagation)
10: w← w + ∆w(∇L) . Adam optimizer step
11: α← min(αmax, α + ∆α) . Increment α
12: p← min(pmax, p + ∆p) . Continuation
13: epoch← epoch + 1
14: until εg < ε∗g . Check for convergence

Further, once the algorithm terminates, the density function can be sampled at a finer resolution to extract crisp

boundaries, as illustrated below through numerical experiments. Finally, one can easily and accurately compute the

gradient of the density field to compute, for example, boundary normals.

5 Numerical Experiments

In this section, we conduct several numerical experiments to illustrate the TOuNN framework and algorithm.

The 2D implementation is in Python, and uses the pyTorch library [25] for the neural network. The 3D implementa-
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tion is in C++, and uses the C++ implementation of pyTorch. The default parameters in the implementation are as

follows.

• The material properties were E = 1, Emin = 1e−6 and ν = 0.3.

• A mesh size of 60× 30 was used for all 2D experiments, unless otherwise stated.

• The NN is composed of 5 layers with 20 nodes (neurons) per layer, for both 2D and 3D, unless otherwise specified.

The number of design variables, i,e, the size of w, is 1782, that corresponds approximately to the total number of

2D elements in a 60x30 mesh; this is equal the number of design variables in typical SIMP based formulations.

• The LeakyReLU was chosen as the activation function for all nodes.

• The learning rate for the Adam optimizer was set at the recommended value of 0.01 [44].

• A threshold value for gradient clipping was also set at the recommended value of 0.1 [40].

• The α parameter is updated as follows: α0 = 0.1, αmax = 100 and ∆α = 0.05.

• The p parameter is updated as follows: p0 = 2.0, pmax = 4 and ∆p = 0.01.

• The termination criteria were as follows: ε∗g = 0.035; a maximum of 499 iterations is also imposed.

• After termination, the density in each element was sampled on a 15× 15 grid to extract the topology.

All experiments were conducted on a Intel i7 - 6700 CPU @ 2.6 Ghz with 16 GB of RAM. Through the experiments,

we investigate the following.

1. Validation: The first task to validate the TOuNN framework by comparing the computed topologies for standard

2D benchmark problems, against those obtained via established methods [26]. Typical convergence plots for the

loss function, objective and constraint are also included.

2. Computational Cost: Typical computational costs are tabulated and compared.

3. NN Dependency: Next, we vary the NN size (depth and width), and study its impact on the computed 2D topolo-

gies.

4. Mesh Dependency: Similarly, we vary the FE mesh size in 2D and study its impact on the topology.

5. High Resolution Boundary: Boundary extraction via post-process sampling of the density field is illustrated through

examples.

6. Three-dimensional: The proposed methodology is demonstrated using a 3D example.

7. Design and Manufacturing Constraints: Finally, we explore extension of the presented framework to include man-

ufacturing constraints that render the obtained designs manufacturable.

5.1 Validation

We begin by comparing the topologies obtained from the proposed framework, against those obtained using

the popular 88-line implementation of SIMP-based optimization [26]. With the default parameters listed above, and

with a filtering radius of 2.0 [26], the results are summarized in Figure 5, where v∗f is the desired volume fraction.

We observe that although the topologies are sometimes different (due to the infinitely many solutions), the com-

pliances are marginally lower (better) for the TOuNN framework. The number of finite element operations is also

summarized for each example. The sharpness of the boundary for the TOuNN framework stems from the analytic

representation of the density field.
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J = 49.01 iter = 165

F

= 0.75 F J = 43.69; iter = 214

= 0.5
F

J = 56.32 iter = 173 J = 48.73 iter = 203

= 0.45 J = 91.66 iter = 273 J = 73.24 iter = 98

F J = 15.71 iter = 274 J = 12.55 iter = 96
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= 0.20

F

SIMP TOuNNDesign

Tip-loaded Cantilever

Mid Cantilever

MBB Beam

Michell Beam

Distributed-load Beam

Fig. 5: Validation of TOuNN.

Typical convergence plots for the mid-loaded cantilever beam is illustrated in Figure 6, and the convergence plot

for the Michell beam is illustrated in Figure 7. In the two figures, the relative number of grey elements denotes the

ratio of elements with densities between 0.05 and .95, to the total number of elements, i.e., εg = Ngrey/Ntotal . As

described at the beginning of this section, optimization terminates when εg < 0.035.

Finally, Table 1 summarizes the number of FE iterations for all 5 examples, for a wide range of volume fractions.

We could not observe any pattern. However, for the distributed-load problem, the algorithm failed to converge for

two of the volume fractions. This is discussed further later in the paper.

Volume Fraction→ 0.90 0.85 0.70 0.50 0.35 0.25 0.15
Tip-loaded cantilever 103 181 256 128 129 115 129
Mid-loaded cantilever 81 170 136 150 141 161 177

MBB beam 176 248 177 113 98 106 121
Michell beam 122 96 72 54 112 75 105

Distributed load bridge 350 176 51 499* 499* 218 214

Table 1: The number of iterations for various examples; (*) denotes lack of convergence.
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Iter = 20 Iter = 60 Iter = 100Iter = 60

Iter = 120 Iter = 150

Fig. 6: Convergence plots for the problem in Figure 5 mid-cantilever.

Iter = 20 Iter = 40

Iter = 60 Iter = 80 Iter = 96

Fig. 7: Convergence plots for the problem in Figure 5 Michell beam.

5.2 Computational Cost

Next, we briefly summarize the computational costs in TOuNN. Recall that the framework (see Figure 2) can be

separated into the following components:

(i) Forward : Computing density values at the sampled points, a.k.a, forward propagation.

(ii) FEA : Finite element analysis to compute displacements, compliance, etc.

(iii) Wt.Update : Computing the loss function, gradient clipping and updating weights through back-propagation

(includes sensitivity analysis).

(iv) Other : Computing the convergence criteria and other book-keeping tasks.

Table 2 summarizes the time taken for each example, and for each of the components. For the default mesh size

of 60x30, FEA consumes approximately 50% of the total computation. For larger mesh sizes, the percentage increases
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as one would expect. We note that the cost of each TOuNN iteration is roughly twice the cost of each iteration in the

88-line code [26].

Example (Vol.Frac) Forward FEA Wt. update Other Total Time (Iter) Total Time [26](Iter)
Tip Cantilever (0.75) 0.79 4.49 2.01 1.25 8.54 (214) 4.32 (165)
Mid Cantilever (0.5) 0.75 4.2 1.98 1.40 8.34 (203) 4.51 (173)

MBB (0.45) 0.42 3.13 1.25 1.44 6.23 (98) 10.93 (273)
Michell (0.3) 0.42 2.97 1.21 1.61 6.21 (96) 10.68 (274)

Distributed beam (0.2) 0.68 4.55 1.86 1.76 8.85 (214) 4.31 (161)

Table 2: Time taken in seconds for each component of the framework, for each example.

5.3 NN Size Dependency

The functional representation of a neural network (here the density function) is global, highly non-linear, and

evades simple characterization [45], [46], [47]. It is therefore difficult to predict a priori the minimum size of the

neural network (depth and height) required to capture a particular topology, except in trivial scenarios. One such

scenario is illustrated in Figure 8a where the expected topology is a tensile bar. Due to the simplicity of the topology

a neural network with a single hidden layer with a single node (size: 1 x 1) is sufficient to capture the topology of

volume fraction 0.4 as illustrated in Figure 8b. The number of design variables, i.e., the size of w, associated with

this 1 x 1 network is 7.

F

J = 9.63; iter = 329

Fig. 8: The tensile load problem; a neural net of size 1 x 1 is sufficient to capture the topology.

As expected, for other non-trivial scenarios, a larger NN is required. To illustrate, we compute the topology for

the tip-cantilever problem posed in Figure 5, with varying neural net size (depth and height), keeping everything

else at default values, as listed at the beginning of this section. The results are summarized in Figure 9, where a NN:

2 x 8 (114) implies that the neural network has 2 layers, with each layer having 8 nodes, and the total number of

design variables is 114. The algorithm did not converge when the NN size was too small (2 x 8). We observe that the

complexity of the resulting topology remains unchanged with increasing NN-size, while the computational cost (as

captured by seconds/iteration) is weakly dependent on the NN size. It is a reasonable to expect that the minimum

feature size will depend on the size of the neural network; further investigation is needed to validate this hypothesis.

5.4 Effect of Mesh Size

We next briefly study the effect of the mesh size on the computed topology; all other parameters were kept

constant at default values. Since the density field is independent of the mesh, the computed topology can also be
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NN : 2 X 8 (114)

J = 49.3; iter = 499*; sec/iter = 0.035

NN : 3 X 10 (272)

J = 46.5; iter = 298; sec/iter = 0.035

NN : 4 X 15 (797)

J = 46.9; iter = 333 ; sec/iter = 0.038

NN : 7 X 35 (8997)

J = 47.4; iter = 200; sec/iter = 0.051 

NN : 5 X 30 (3872)

J = 47.3; iter = 298; sec/iter = 0.046

NN : 10 X 50 (23202)

J = 46.6; iter = 223; sec/iter = 0.081

Fig. 9: Optimized topologies for the tip-loaded cantilever beam, for varying neural net size: depth x height, with
number of design variables in parenthesis.

expected to be independent of the mesh (provided the disretization is fine enough to capture the underlying physics).

This can be observed in the results illustrated in Figure 10.

Mesh 20 X 10 Mesh 80 X 40Mesh 40 X 20

J = 56.84; iter = 130; sec/iter = 0.026J = 57.23; iter = 67; sec/iter = 0.017 J = 55.49; iter = 130; sec/iter = 0.078

Fig. 10: Impact of mesh size on the computed topology.

5.5 High Resolution Boundary

One of the key challenges in TO is boundary resolution. This is often achieved by increasing the size of the

mesh (which increases the computational cost), or by employing multi-resolution schemes [48] [49]. In the proposed

framework, one can extract a high resolution boundary at no additional cost as follows. First the optimization is

carried out; then the optimized (i.e. trained) weights, i.e., w∗, are used to sample the domain at a fine resolution as

illustrated in Figure 11.

5.6 Extension to 3D

We now consider the implementation of the TOuNN framework to 3D. To achieve this, the fundamental changes

are: (1) we add an input neuron corresponding to the z coordinate, and (2) we use a 3D FEA solver; this is illustrated

in Figure 12. All other aspects of the NN remain unchanged.
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NN (w)
Loss 

Function

Optimize w

FEA

TO

x

y

NN (w*)

w*

Fig. 11: High resolution boundary is extracted by first optimizing, and then using the optimized weights to sample
the density at a high resolution.
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Fig. 12: Implementation of TOuNN in 3D.

To validate the 3D implementation, we consider the edge-cantilever beam problem [50] posed in Figure 13a. The

domain is discretized by a 15 x 30 x 9 hexahedral mesh. The topology obtained and the compliance using the code

provided by [50] is illustrated in Figure 13b. In our formulation we used an identical mesh; all other parameters

including the NN size were set at default values. The computed topology and compliance is illustrated in Figure

13c. For this example, the 3D TOuNN framework takes fewer iterations and leads to a design with comparable

compliance. Further, the number of finite elements is 4050, while the size of NN, i.e., the number of design variables,

is 1800.

5.7 Design and Manufacturing Constraints

Typically, design and manufacturing constraints are imposed in TO through projection operators [51] that act

on the density field ρ. Similarly, in the current formulation, we introduce input and output projection operators as

illustrated in Figure 14. As explained below, certain types of constraints can be handled as input projections, and

others as output projections.
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Fig. 13: (a) 3D edge cantilever [50]. (b) Computed topology using [50]. (c) Computed topology using 3D TOuNN.
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Fig. 14: Input and output projections can be used to impose design/manufacturing constraints.

5.7.1 Symmetry

First we consider classic symmetry constraints within this framework. To enforce symmetry about, say, the x axis

passing through (x0, y0), we transform the y coordinate as follows:

y← y0 + |y− y0| (10)

In other words, we treat symmetry as an input projection. No other change is needed to the framework. As an

example, Figure 15 illustrates imposing symmetry about the y axis for a tip-loaded cantilever beam. For comparison,

see Figure 5 where the symmetry was not imposed. Imposing symmetry results in a 13% increase in compliance.

F

Fig. 15: Symmetry about the y axis for a tip-cantilever beam
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5.7.2 Non-Design Region

We now consider the non-design constraint where material should not be removed from certain a region ΩN . Essen-

tially, the density value should be forced to a value of 1 in this region. However, to facilitate backward propagation,

i.e., sensitivity analysis, we treat this as an output projection via a functional approximation of the max operator:

ρ← 0.5(ρ + |1− ρ|) {x, y} ∈ ΩN (11)

As an example, Figure 16a illustrates the Michell beam problem with a non-design constraint, where material

should not be removed from an annular region as shown. The computed topology is illustrated in Figure 16b. Im-

posing this constraint results in a 14% increase in compliance, compared to the design without this constraint in

Figure 5.

2L

L

Fig. 16: (a) Michell beam problem with a non-design constraint. (b) Optimized topology that satisfies the constraint.

5.7.3 Extrusion

The final constraint explored here is extrusion in 3D, where the cross section of the topology must not change

along the extruded direction. Extrusion constraint can be easily implemented here as an input projection. Specifically,

suppose the extruded direction is x, then the x input is simply discarded in the 3D NN architecture; everything else

remains the same (including the use of 3D FEA):

(y, z)← (x, y, z) (12)

As an example, Figure 17a illustrates a simple design problem in 3D; the desired volume fraction is 0.5. Figure

17b illustrates the optimized topology without extrusion constraint, while Figure 17c illustrates the topology with

an extrusion constraint along x. The extrusion constraint leads to a 6% increase in compliance, but takes fewer

iterations.

6 Opportunities and Challenges

There are several extensions and opportunities that we foresee. A possible extension is multi-material topology

optimization; this would entail extending the NN output to multiple dimensions. A potentially rich opportunity is
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F
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Z

Fig. 17: (a) A 3D beam problem. (b) Optimized topology without extrusion constraint. (c) Optimized topology with
extrusion constraint along x.

in the infinitely differentiable density function. This translate into accurate computation of boundary normal, that

could be useful in several applications.

We also observed some challenges. For example, the lack of detailed features in the computed topologies (see

Figure 5) could be of concern in certain applications. This limitation directly stems from the use of global activation

functions in TOuNN. It may be possible to overcome this by exploring other activation functions.

A second (and related) challenge is the handling of distributed loads. For example, consider the distributed load

problem in Figure 18; the topologies computed via 88-line [26] and TOuNN are also illustrated. While the 88-line

code [26] converged to a possible solution (with gray regions), TOuNN failed to converge due to the imposed ter-

mination criteria of requiring close to zero grey elements. Alternate termination criteria suitable for our framework

are being explored. One simple solution, we observed, was to increase the penalization factor; alternately, one can

penalize presence of gray elements through the loss function.

F

= 4.08; iter = 159 = 4.34; iter = 499*= 0.4

Fig. 18: Distributed loads leads to gray regions, and may therefore fail to converge.

In this paper, a simple volume-constrained compliance minimization was explored; extensions to handle other

objectives with multiple constraints are currently being explored; see [33], [34].

An open and interesting question is the geometric interpretation of the NN design variables. However, even for

the simple tensile bar problem in Figure 8a where a NN of 1 x 1 was used, it was difficult to geometrically interpret

the weights and bias values. This can be attributed to the use of non-linear softMax function at the output. Alternate

output functions need to be explored.



TOuNN: Topology Optimization using Neural Networks 17

Checkerboard patterns commonly occur in SIMP based topology optimization [52], [53], and restriction methods

such as filtering, perimeter control, etc. are often used in this context [43]. However, in the current formulation, no

checkerboard patterns were observed in any of the experiments. However, it is possible that checkerboard might

begin to appear if the NN size is increased significantly; further investigation is needed.

In conclusion, in this paper, a direct topology optimization framework using a conventional neural network

(NN) was proposed. The salient features of the framework are: (1) the direct use of NN’s activation functions, (2)

exploiting built-in backpropogation for sensitivity analysis, (3) implicit filtering, (4) sharpness of the boundary, and

(5) scope for relearning. The framework was validated and characterized through several benchmark problems in

2D and 3D. However, several challenges remain as highlighted above.

7 Replication of Results

The Python code used in generating the examples in this paper is available at www.ersl.wisc.edu/software/TOuNN.zip.
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