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Abstract Microstructural topology optimization (MTO) is
the simultaneous optimization of macro-scale topology, and
micro-scale structure. MTO holds the promise of enhancing
product-performance beyond what is possible today. Fur-
thermore, with the advent of additive manufacturing, the re-
sulting multi-scale structures can be fabricated with relative
ease. There are however two significant challenges associ-
ated with MTO: (1) high computational cost, and (2) poten-
tial loss of microstructural connectivity.

In this paper, a novel density-and-strain based K-means
clustering method is proposed to reduce the computational
cost of MTO. Further, a rotational degree of freedom is in-
troduced to fully utilize the anisotropic nature of microstruc-
tures. Finally, the connectivity issue is addressed through
auxiliary finite-element fields. The proposed concepts are
illustrated through several numerical examples applied to
two-dimensional single-load problems.

Keywords Topology optimization · microstructural
optimization design · clustering · principal strain

1 Introduction

Topology optimization is a means of distributing material
within a design domain, to optimize performance (Bendsøe
and Sigmund (2004); Sigmund and Maute (2013)). It is now
a mature field with multitude of methods, including homog-
enization (Bendsøe and Kikuchi (1988); Hassani and Hinton
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(1998)), Solid Isotropic Material with Penalization (SIMP)
(Bendsøe (1989)), level set approach (Sethian and Wieg-
mann (2000); Wang et al. (2003)), topological sensitivity
framework (Novotny et al. (2003); Deng and Suresh (2015,
2017)) and evolutionary scheme (Xie and Steven (1993);
Yang et al. (1999)). As an example of topology optimiza-
tion, Fig. 1(a) illustrates a compliance-optimized topology
for a structural problem, computed via SIMP.

On the other hand, microstructural design is a technique
for the distribution of material, at a smaller scale, to opti-
mize material properties. Through microstructural design,
one can customize various material behavior (Osanov and
Guest (2016)) including bulk/shear modulus (Huang et al.
(2011)), Poisson’s ratio (Vogiatzis et al. (2017); Xie et al.
(2014)), thermal expansion (Sigmund and Torquato (1997)),
elasticity tensor (Sigmund (1994)) and other extremal prop-
erties (Sigmund (2000)). For example, Fig. 1(b) illustrates
an optimal microstructure, once again computed via SIMP,
for maximizing shear modulus.

Microstructural topology optimization (MTO) combines
topology optimization and microstructural optimization, for
simultaneously optimization of topology, at a macro-scale,
and microstructures at a smaller-scale. For example, Fig. 1(c)
illustrates an optimized MTO design. With the advancement
in additive manufacturing (Gao et al. (2015); Liu et al. (2018)),
such MTO designs can now be fabricated with relative ease.
However, there are several challenges underlying MTO; the
objective of this paper is to identify and address some of
these challenges.

To understand these challenges, consider a typical MTO
problem depicted in Fig. 2 where the objective is to construct
an optimal topology, and compute optimal microstructures
over each macro finite element. This entails the following:
Given an initial topology and an initial set of (random) mi-
crostructures, (1) a microstructural analysis (numerical ho-
mogenization) is performed for each distinct microstructure,
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(a) (b) (c)

Fig. 1: Different design strategies. (a) Single scale design of short cantilever fixed on the left edge and loaded at the center
of right edge, (b) 3× 3 units of microstructures optimized for maximum shear stiffness, (c) MTO design using proposed
method for same problem description as (a).

 

Fig. 2: Schematic of microstructural topology optimization.

to extract the equivalent elasticity tensor (Rodrigues et al.
(2002)), (2) the elasticity tensors are then used to assem-
ble a global stiffness matrix, (3) a macroscale analysis is
carried out, (4) followed by sensitivity analysis, and (5) fi-
nally, the micro and macro design variables are updated,
subject to various constraints. These five steps must be re-
peated numerous times, making MTO ”very demanding”
(Coelho et al. (2008)) and computationally ”quite massive”
(Rodrigues et al. (2002)). Efforts to reduce computational
cost can often lead to sub-optimal designs. Further, ensur-
ing topological connectivity between adjacent microstruc-
tures is also non-trivial. For example, in Fig. 2, the two mi-
crostructures with unit cells are not geometrically compati-
ble when adjacent.

Various strategies have been proposed to address these
challenges; these are reviewed in Section 2. In Section 3, we
provide a generic MTO formulation. We discuss methods
to alleviate the challenges in MTO by introducing cluster-
based MTO design, which leads to a discussion on sensitiv-
ity analysis, and the proposed algorithm in Section 4. In Sec-
tion 5, several numerical examples illustrate the proposed
framework in context of two-dimensional single-load prob-
lems. We conclude the paper in Section 6, summarizing the

current work, and suggesting future work with open chal-
lenges.

2 Literature review

As mentioned earlier, MTO poses two distinct challenges:
(1) high computational cost, and (2) lack of connectivity
between microstructures. Various strategies that have been
proposed to resolve these challenges are discussed below.

2.1 Strategies to reduce computational cost

A simple strategy, specifically to reduce computational cost,
is to constrain all microstructures to be identical. A sin-
gle microstructure is then controlled by a set of micro de-
sign variables, with no macro design variables (Huang et al.
(2013)). Due to its simplicity, the computational cost is sig-
nificantly reduced, and connectivity can be guaranteed. How-
ever, the performance of the resulting structure is very poor,
i.e., it is often much worse than a classic topology optimized
design (Li et al. (2018)).

An extension of the above strategy is to use a single mi-
crostructure, but also to include a density variable ρe over
each macro-element (Liu et al. (2008); Deng et al. (2013);
Yan et al. (2014)). Then, the classic SIMP penalization func-
tion f (ρe) = ρ

p
e can be used to control the presence or ab-

sence of each microstructure. The performance improves
significantly with little or no additional computational cost.
However, an artificial volume constraint must be imposed
on the microstructures to avoid trivial solid/void designs.
This leads to diminishing performance with decreasing mi-
crostructure’s volume fraction (Sivapuram et al. (2016); Deng
and Chen (2017)). In other words, under this formulation,
the very use of microstructures lowers performance!

A natural generalization is to allow a finite number of
microstructures, rather than just one. For example, one can
assume that macro-elements with physical proximity share
the same microstructural design, leading to the grid-based
clustering (Sivapuram et al. (2016); Nakshatrala et al. (2013);
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Ferrer et al. (2017)). Although the connectivity amongst neigh-
boring microstructures in grid-based clustering can be han-
dled efficiently (Du et al. (2018)), the clustering is far from
optimal (as will be demonstrated later on).

Alternately, variable-thickness design optimization (SIMP
with p= 1) is first performed, and then macro-elements with
similar density ρe are assumed to have the same microstruc-
tural design (Li et al. (2018); Zhang et al. (2018); Liu et al.
(2018)), leading to a density-based clustering. There are mul-
tiple methods for division of macro-elements into clusters.
For example, uniform density clustering which divides the
range (0,1] into R equal parts (Li et al. (2018)), or uniform
size clustering where macro-elements sorted according to
density are divided into equal sized clusters. Similarly, one
can divide macro-elements based on principal stress/strain
directions (Xu and Cheng (2018)). K-means clustering (Lloyd
(1982)) or k-clustering algorithm identifies already existing
clusters in the given distribution of data (Liu et al. (2018))
(e.g. density or principal stress direction) and is likely to
perform better than the uniform clustering methods.

In general, with clustering, performance improves, with
a slight increase in computational cost (depending on the
number of clusters).

2.2 Strategies to ensure connectivity

Connectivity has been addressed by several researchers: (1)
if the microstructures are graded version of one parent mi-
crostructures, connectivity can be easily guaranteed (Wang
et al. (2017)), (2) perturbation of coordinates may be used
to achieve connected optimized structures (Liu et al. (2017);
Zhu et al. (2019)), (3) alternately, passive (non-design) micro-
elements can be assigned to all microstructures for connec-
tivity (Zhou and Li (2008); Deng and Chen (2017); Li et al.
(2018)), or, (4) a constraint on some connectivity measure
can be introduced (Du et al. (2018)), and (5) finally, if the
microstructures are simple rotations of rectangular voids, it
may be possible to ensure connectivity (Pantz and Trabelsi
(2008); Groen and Sigmund (2018); Allaire et al. (2018)).
Use of parameterized rectangular voids renders these tech-
niques computationally efficient. Alexandersen and Lazarov
(2015) proposed an MTO technique without length-scale sep-
aration for better analysis and connectivity at an expense
of high computational cost. A similar approach was earlier
used by Zhang and Sun (2006) to study length-scale related
effect.

2.3 Alternate Strategies

To solve both the computational complexity and the con-
nectivity issue lattice structures are used where the topol-
ogy of the microstructure is fixed, but the lattice parame-

ters are varied to achieve desired properties (Hassani and
Hinton (1998); Cramer et al. (2016); Wang et al. (2017)).
However, the choice of the lattice topology is often arbitrary,
and the performance is typically sub-optimal. Improved per-
formance may be achievable by designing lattice structures
on-the-fly (Wang et al. (2017)) or by better choice of lat-
tice for the problem in hand, e.g. rectangular void aligned
along principal direction. (Groen and Sigmund (2018); Al-
laire et al. (2018))

Yet another strategy is the use of rank-two laminates
(Francfort and Murat (1986); Avellaneda (1987); Jog et al.
(1994)) that are layers of solid interspersed with layers of
striped solid and void. Since the effective properties of these
laminates can be analytically computed, computational cost
is reduced significantly. Their optimality for 2-dimensional
compliance minimization problem has been demonstrated
(Avellaneda (1987); Allaire et al. (2018)). However, these
laminates are not manufacturable.

The free material optimization (FMO) method has also
been proposed (Bendsøe et al. (1994); Kočvara et al. (2008))
where the objective is to first compute optimal elasticity ten-
sors for each macro-element. Once this is complete, the next
phase involves computing the microstructures that have the
desired elasticity tensors (Schury et al. (2012)). Realizabil-
ity of the second phase is discussed in (Milton and Cherkaev
(1995)). Unfortunately, the second phase can be computa-
tionally very demanding, and connectivity is not guaranteed.

2.4 Paper Contributions

In this paper, we show that the performance can be improved
significantly and consistently, by clustering elements based
on the underlying strain tensor and the SIMP density, and
adding a rotational degree of freedom. Connectivity is tack-
led using an additional finite element analysis. The main
contributions of this paper are as follows:

1. Describing various MTO methods, including the pro-
posed one, as special cases of a single generic MTO for-
mulation.

2. While the importance of SIMP density, and strain infor-
mation for topology optimization, have been identified
by Jog et al. (1994); Bendsøe et al. (1994), we justify the
importance of these two quantities for MTO clustering,
and provide a framework for exploiting them in MTO.

3. Similarly, while the concept of rotational degree of free-
dom has been identified within the context of microstruc-
tural design (Bendsøe and Kikuchi (1988)), we show
that this concept can also be exploited for reducing the
design space, and for improved clustering.
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  N (here 128) Macro-elements    M (here 400) Micro-elements

Fig. 3: Illustration of macro and micro elements in a rectan-
gular domain.

3 Microstructural topology optimization (MTO) design

Recall that MTO involves several steps including microstruc-
tural analysis, global stiffness matrix assembly, and macro
analysis. In this section, the mathematics behind these criti-
cal steps is described, together with typical design variables,
objective and constraints. Finally, a unified framework that
captures popular MTO methods is also presented.

3.1 Design Variables

In MTO, the domain is discretized into N macro-elements,
and each macro-element is further divided into M micro-
elements as illustrated in Fig. 3. There are typically two
sets of (SIMP) design variables (bounded by 0.001 and 1)
corresponding to these elements, namely macro and micro
variables, resulting in a total of (N +NM) design variables.
However, if a clustering strategy is used, several macro-elements
are mapped to a single microstructure, and they will share
the same set of design variables. Consequently, with clus-
tering, the total number of design variables will be reduced
to (N +RM), where R is the number of distinct microstruc-
tures. Henceforth, in the presence of clustering, the mapping
function from a macro-element n to a microstructure r will
be denoted by r = g(n). The macro-variable will be denoted
by ρn while the micro-variable will be denoted by γr,m corre-
sponding to micro-element m associated with a microstruc-
ture r.

3.2 Objective and Constraints

In MTO, the typical objective is to minimize compliance

C = uTKu

where K and u are global stiffness matrix and displacement
vector, respectively. This is subjected to a global volume
constraint:

v
N

∑
n=1

(
ρn

M

∑
m=1

γg(n),m

)
≤V ∗ (1)

where v is the volume of a micro-element, and V ∗ is the
desired design volume. An additional volume constraint is
often imposed on all microstructures to avoid trivial (fully
solid) designs:

v
M

∑
m=1

γr,m ≤ v∗,∀r ∈ {1 . . .R} (2)

There are variations to these generic constraints. For exam-
ple, in the case of a single microstructure, i.e., R= 1, the vol-
ume constraint on micro-variables is necessarily active. This
simplifies Eqn. (1) to v∗∑

N
n=1 ρn ≤ V ∗, making the global

volume constraint independent of micro design variables.

3.3 Microstructure Analysis and Homogenization

An important step in MTO is to compute the homogenized
elasticity tensor for each distinct microstructure (Bendsøe
and Kikuchi (1988)). First the elasticity tensor of a micro-
element m is computed as Dr,m = (γr,m)

p D0 where D0 is
elasticity tensor of base material, and p is the SIMP pe-
nalization factor. The elasticity tensors are then exploited to
assemble the microstructure stiffness matrix Kr. Three in-
dependent force vectors f i=1,2,3

r corresponding to three unit
strains - two normal and one shear strain - are applied as il-
lustrated in Fig. 4. By solving the corresponding three prob-
lems Krui

r = f i
r, the homogenized elasticity tensor DH

r can
be extracted (Liu et al. (2002)). Note that these three prob-
lems must be solved for each of the R distinct microstruc-
tures.

(a) (b) (c)

Fig. 4: Homogenization by analyzing microstructure thrice.

3.4 Macro Analysis

Next, the homogenized elasticity tensor DH
r is either directly

used (Rodrigues et al. (2002); Nakshatrala et al. (2013)),
or scaled (Liu et al. (2008); Deng et al. (2013); Yan et al.
(2014)) via ρ

p
n DH

r , to compute the stiffness matrix of each
macro-element. In either case, these macro-element matri-
ces are assembled into a global stiffness matrix K. Finally,
the global problem Ku = f is solved, where f is the external
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force. The design variables are suitably updated (to be dis-
cussed later), and the process to repeated, until convergence
is reached.

3.5 Generic Formulation

Given the above definitions, almost all existing MTO (specif-
ically, two scale) formulations can be captured via a generic
MTO problem statement as follows.

minimize
x

uTKu (3a)

subject to Ku = f (3b)

v
M

∑
m=1

γr,m ≤ v∗ ∀r ∈ {1 . . .R} (3c)

v
N

∑
n=1

(
ρn

M

∑
m=1

γg(n),m

)
≤V ∗ (3d)

0.001≤ xi ≤ 1 ∀i (3e)

Various MTO formulations can be interpreted as special
cases of the above formulation as in Table 1; references are
provided for each formulation type. As one can observe, the
design variables x, the constraints, the definition of elasticity
matrix for macro-elements, are different for each formula-
tion. Performance with respect to classic topology optimiza-
tion has also been compared for different methods, where
performance less (greater) than 1 implies the MTO formu-
lation performs worse (better) than classic topology opti-
mization (performed using SIMP penalty p = 3). Two pop-
ular alternatives not included in the table are: (1) variable-
thickness design problem which has optimal performance,
but violates Hashin-Shtrikman (Hashin and Shtrikman (1962))
bounds and gives non-manufacturable design (Sigmund et al.
(2016)), and (2) the use of all design variables (NM) at one
scale; this will provide optimized manufacturable design at
a prohibitive computational cost. The above formulation can
be easily modified for multiple load cased by adding equa-
tion for each load case in 3b and adding their contribution to
3a as weighted sum.

Later in the paper we will compare the proposed formu-
lation (discussed next) against some of the formulations in
Table 1.

4 Proposed Method

In this section, we discuss the proposed method whose main
highlights are: (1) a simplified MTO formulation that elimi-
nates macro design variables and micro volume constraints,
(2) a ”density-and-strain” based clustering, (3) exploiting ro-
tation variables to increase the design space, while enforcing
connectivitiy.

4.1 Proposed Clustering Method

The proposed MTO formulation is a simplified version of
the generic statement in Eqn. (3):

minimize
γ1,γ2,...,γR

uTKu (4a)

subject to Ku = f (4b)

v
N

∑
n=1

M

∑
m=1

γg(n),m ≤V ∗ (4c)

0.001≤ γr,m ≤ 1 1≤ r ≤ R,1≤ m≤M
(4d)

Observe that, in the proposed formulation, there are no macro
SIMP variables ρn. As a direct consequence, a single global
volume constraint (see Eqn. (4c)) is sufficient; eliminating
the microstructure volume constraint, which leads to better
distribution of material. If κ(r) denotes the cardinality of a
microstructure r i.e. the number of macro-elements associ-
ated with a microstructure r then the volume constraint can
be expressed as:

v
R

∑
r=1

(
κ(r)

M

∑
m=1

γr,m

)
≤V ∗ (5)

rendering the mapping function g(n) dispensable for impo-
sition of volume constraint.

4.2 Combined density-and-strain based clustering

In Section 2, we reviewed grid-based clustering and density-
based clustering. Here, we propose and justify a hypothesis
that a ”combined density-and-strain” based clustering will
lead to better performance. As a motivation, consider the
pure density based clustering illustrated in Fig. 5 where a
variable thickness design optimization is first carried out;
then the resulting density distribution is used to cluster macro-
elements. This method however disregards local strain con-
ditions. For example, as illustrated in Fig. 5, the three macro-
elements ‘a, b and c’ with similar densities, but potentially
different strain characteristics, are grouped into the same
cluster. This, leads to sub-optimal microstructures, as illus-
trated later on through numerical experiments.

The proposed hypothesis (of strain-and-density based clus-
tering) is further supported by FMO (Bendsøe et al. (1994))
where it is shown that the optimal elasticity components at
any location depends both on the local principal strains εI
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Table 1: Various MTO formulations as instances of the generic formulation.

Problem Type x Elasticity tensor (3c) (3d) Performance
Classic topology optimization1 ρ ρ

p
n D0 ×

√
1

Single microstructure optimization2 γ DH(γ)
√

× � 1
Single microstructure + macro-design3 ρ,γ ρ

p
n DH(γ)

√ √
< 1

Unclustered microstructure optimization4 γ1,γ2, . . . ,γN DH(γn)
√

× > 1
Clustered microstructures + macro-design5 ρ,γ1,γ2, . . . ,γR ρ

p
n DH(γr)

√ √
< 1

Clustered microstructures + both constraints6 ρ,γ1,γ2, . . . ,γR DH(γr)
√ √

Q 1
Clustered microstructures7 γ1,γ2, . . . ,γR DH(γr)

√
× Q 1

1 - Sigmund (2001), 2 - Huang et al. (2013), 3 - Liu et al. (2008); Deng et al. (2013); Yan et al. (2014), 4 - Rodrigues et al.
(2002); Nakshatrala et al. (2013), 5 - Sivapuram et al. (2016), 6 - Li et al. (2018); Zhang et al. (2018), 7 - Nakshatrala et al.
(2013); Ferrer et al. (2017); Liu et al. (2018)

Fig. 5: Schematic of density-based clustering.

Fig. 6: Schematic of combined density-and-strain based clustering.

and εII , and the SIMP density ρ , i.e.,

D11 = ρ
ε2

I

ε2
I + ε2

II
(6a)

D22 = ρ
ε2

II

ε2
I + ε2

II
(6b)

D12 = ρ
εIεII

ε2
I + ε2

II
(6c)

Further, observe that it is sufficient to consider the strain
ratio ε2

r = ε2
II/ε2

I , where εII
2≤ εI

2 to ensure εr ∈ [0,1]. Thus,
in this paper, we consider the two scalars [ρ,ε2

r ]
T as a basis

for clustering. In particular, we use Lloyd’s K-means clus-
tering algorithm (Lloyd (1982)), together with K-means++
initialization (Arthur and Vassilvitskii (2007)). Note that the

macro-elements with density (obtained via variable thick-
ness design optimization) close to 0, or close to 1, are con-
strained to two distinct clusters. The combined density-and-
strain based clustering is shown in Fig. 6. This clustering can
also be performed on designs obtained via SIMP with penal-
ization higher than 1 or via rank-2 laminate (Francfort and
Murat (1986)) design so as to not violate Hashin-Shtrikman
bounds (Hashin and Shtrikman (1962))

We note that when the principal strains are of opposite
signs, optimal periodic microstructure is not achievable (Al-
laire and Aubry (1999)); also see Fig. 7 of Bendsøe and Sig-
mund (1999). The proposed clustering scheme leads to sub-
optimal designs.
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4.3 Microstructure rotation

Observe that, by definition within a given cluster, macro-
elements have similar values for the density and principal-
strain ratio. However, the principal strain direction can vary
significantly within a cluster. Therefore, in order to map
the macro-elements within a cluster to a single parent mi-
crostructure, they must be rotated by an angle θn as deter-
mined by the principal direction (see Fig. 7).

(a)

(b)

Fig. 7: Rotation of microstructure by angle θn.

Rotating microstructures along principal direction (Ped-
ersen (1989)) has two-fold advantage in clustering. The num-
ber of strain components is reduced from 3 to 2 (reducing
the dimension of the problem), and better performance can
be achieved with fewer clusters.

Further, due to this rotation, the elasticity tensor for each
macro-element must also be transformed as follows: Dn =

Q(θn)DH(γg(n))Q
T(θn) where rotation matrix Q(θn) is given

by

Q(θn) =

 cos2(θn) sin2(θn) sin(2θn)

sin2(θn) cos2(θn) −sin(2θn)

−sin(2θn)/2 sin(2θn)/2 cos(2θn)

 (7)

This amounts to carrying out two matrix-matrix multiplica-
tions for each macro-element, during each step of the opti-
mization process, followed by computing the corresponding
element stiffness matrix. One can however significantly re-
duce the computational cost through elemental stiffness ma-
trix KE templates. Specifically, at the start of the optimiza-
tion process, the following six templates are computed:

K̂i = KE (D̂i
)

i = 1, . . . ,6 (8)

where

D̂1 =

1 0 0
0 0 0
0 0 0

 , D̂2 =

0 0 0
0 1 0
0 0 0

 , D̂3 =

0 0 0
0 0 0
0 0 1

 ,
D̂4 =

0 1 0
1 0 0
0 0 0

 , D̂5 =

0 0 1
0 0 0
1 0 0

 , D̂6 =

0 0 0
0 0 1
0 1 0


Then, during optimization, given a homogenized and trans-
formed D matrix for each macro-element, the correspond-
ing elemental stiffness matrix can be efficiently computed
as follows:

KE (D) = D11K̂1 +D22K̂2 +D33K̂3 +D12K̂4

+D13K̂5 +D23K̂6 (9)

4.4 Connectivity of microstructures

Finally, we discuss the connectivity issue. Recall that all mi-
crostructures within a cluster, map to the same parent mi-
crostructure, with possile rotation. If there is no rotation,
then the connectivity within the cluster can be easily en-
forced (see Fig. 8(a)). However, in the presence of rotation,
connectivity is typically lost; see Fig. 8(b).

This can be addressed by morphing microstructures (Pantz
and Trabelsi (2008); Allaire et al. (2018); Groen and Sig-
mund (2018)) using a continuously varying coordinate sys-
tem oriented along principal strain directions. Observe that
the strain directions are computed at the center of each macro-
cell, and are therefore discontinuous, and must be smoothed.
Moreover, the rotational symmetry of the direction field is
handled using connected component labelling (Groen and
Sigmund (2018)).

Let the desired coordinate transformation be represented
by x̃(x,y) and ỹ(x,y) for every point (x,y) in the design do-
main. The gradients of this transformation are set equal to
the principal strain directions n1 and n2, where

n1 =

[
cos(θ)
sin(θ)

]
, n2 =

[
−sin(θ)
cos(θ)

]
i.e.,

∇x̃ = n1, ∇ỹ = n2 (10)
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(a)

(b)

Fig. 8: (a) Arrangement of microstructures without rotation;
(b) desired rotations of microstructure.

In theory, these gradients only exist if curl of n1 and n2 van-
ishes everywhere in the domain (Allaire et al. (2018)), but
this limitation can be disregarded in practice (see Fig. 13 and
its explanation in Allaire et al. (2018) ). Prior works by Al-
laire et al. (2018) and Groen and Sigmund (2018) consider a
cosine function formulation that only applies to microstruc-
tures with rectangular voids. Here, we consider a variation
of this concept that applies to any microstructure.

First, we impose the gradient constraint in a weak sense
using a finite element formulation. In other words, the co-
ordinate transformation fields x̃ and ỹ are described using
standard finite element basis function N with unknown val-
ues ˆ̃x and ˆ̃y defined at the nodes. The gradient of the basis
function is defined as B = ∇N. This leads to a pair of linear
systems:

K̆ ˆ̃x = F̆1, K̆ ˆ̃y = F̆2 (11)

where

K̆ =
∫

Ω

BTBdΩ

F̆1 =
∫

Ω

BTn1dΩ

F̆2 =
∫

Ω

BTn2dΩ

The two linear systems have the same stiffness matrix but
different force vectors. The use of a finite element formu-
lation used here (and also in Groen et al. (2019) applied to
triangle wave function) simplifies the computation, and the
resulting fields are free from oscillations as observed in fi-
nite difference formulation (Groen and Sigmund (2018)).

Further, unlike the cosine (Allaire et al. (2018); Groen
and Sigmund (2018)) or triangle wave (Groen et al. (2019))
formulation, in this paper, the coordinate transformation is
used directly to obtain a morphed set of microstructures. Ev-
ery quad (x̃1, ỹ1, x̃2, ỹ2) such that (x̃2− x̃1 = ∆x),(ỹ2− ỹ1 =

∆y) is mapped with a microstructure where (∆x,∆y) is the
size of a macro-element. This microstructure g(n) corre-
sponds to the macro-element n with center closest to the cen-
ter of the quad. These centers are computed in (x,y) as op-
posed to (x̃, ỹ) used for quad identification. Fig. 9(a) demon-
strates the morphed microstructures generated by using the
above concept. The region marked in the figure corresponds
to a quad which maps one microstructure.

The above formulation restricts isocontours of x̄ and ȳ
to be equispaced, leading to their digression from desired
path especially near regions of convergent principal strain
directions. This is overcome by having a scalar associated
with n1 and n2 which dictates the convergence or divergence
of isocontours. We choose er as suggested by Allaire et al.
(2018) and solve for r using an equation identical to Eqn. (10)
except that the right hand side becomes [− ∂θ

∂y ,
∂θ

∂x ]
T instead

of n1 or n2. As we do not eliminate singularities in strain
field, which usually occurs in void region, we add weight w
which is 0.01 in void regions (Groen and Sigmund (2018))
and one everywhere else. Finite element formulation as de-
scribed earlier is used first for the solution of w∇r =w[− ∂θ

∂y ,
∂θ

∂x ]
T

followed by the solution of modified Eqn. (10) i.e. w∇x̄ =

wern1 and w∇ȳ = wern2. Fig. 9(b) illustrates the morphed
microstructures generated by using the modified equations.

(a)Without scalar parameter r.

(b)With scalar parameter r.

Fig. 9: Morphed microstructures using the continuously
varying coordinate system. Highlighted region is mapping
of one quad.
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As the isocontour spacing is no longer uniform, they
must be properly scaled. Based on our experience, a scal-
ing factor of 2∆x/||∇x̄|| for x̄ and 2∆y/||∇ȳ|| for ȳ is sug-
gested. This factor is problem dependent and needs to be
chosen properly to avoid too coarse or too dense quads. Note
that even for the same parent microstructure, the size of the
quad determines the feature size which varies significantly
throughout the domain. Note the variation in the size of mi-
crostructures from left (compressed) to right (expanded) in
Fig. 9(b) as compared to Fig. 9(a).

After generating the design, a full-scale analysis is per-
formed as a verification step. However, low volume frac-
tion regions with compressed microstructures may exhibit
disconnectedness (see Fig.10(a)) which will lead to a sin-
gular stiffness matrix. Therefore, a 10x finer discretization
of the design domain is used to arrive at final design (as
shown in Fig. 10(b)), which is then agglomerated in a mesh
with (NM) elements (as shown in Fig. 10(c)) to enable full-
scale analysis. In the full-scale analysis, elements penalized
with a penalty parameter of 3 to prevent performance over-
estimation. (Hashin and Shtrikman (1962)). This two-step
approach obviates post-processing of disconnected features.

(a)Mapping on original discretization of NM elements.

(b)Mapping on 10x finer discretization i.e. 10NM elements.

(c)Agglomeration of 10NM elements on NM elements.

Fig. 10: Agglomeration to ensure connectivity for full-scale
analysis

As a final comment on connectivity, observe that mi-
crostructures with their axes oriented along principal direc-
tions, when optimized, give rise to Vigdergauz-like struc-
tures (Vigdergauz (1989, 1994); Bendsøe and Sigmund (1999))
illustrated in Fig. 11. In other words, if a microstructure ex-
ists (with non-zero density and principal stress ratio), the
boundary of the microstructure is always solid. Thus, we
can force the boundary of such microstructures to be a non-
design region, as illustrated in Fig. 12. This ensures connec-
tivity between clusters as well. There may be regions not
fully solid or void with one principal stress vanishing, then
the non-design regions of a microstructure ensure connec-
tivity at the cost of rendering it non-optimal.

(a) (b) (c)

Fig. 11: Microstructure design for volume fraction of 0.5
and principal stress ratio (a) σII

σI
= 0.1, (b) σII

σI
= 0.5, and (c)

σII
σI

= 1.

 

Non-design 
region 

Fig. 12: Proposed non-design elements (shown in dark
color) for ensuring connectivity.

4.5 Sensitivity Analysis and Design Update

We now develop the sensitivity equations; the sensitivity of
compliance C with respect to the micro-design variable γr,m
is given by:

∂C
∂γr,m

= uT
∂K

∂γr,m
u+2uTK

∂u
∂γr,m

(12)

where the symmetry of global stiffness matrix K has been
exploited. We will assume that the load is design indepen-
dent. Therefore, from the governing equation Ku = f , we
have

K
∂u

∂γr,m
=− ∂K

∂γr,m
u
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Substituting this in Eqn. (12) leads to

∂C
∂γr,m

=−uT
∂K

∂γr,m
u (13)

One can express this as a sum over all the macro-elements

∂C
∂γr,m

=−
N

∑
n=1

uTn
∂KE

n

∂γr,m
un (14)

Exploiting Eqn. (9), the derivative of an elemental stiffness
matrix can be expressed as

∂KE
n

∂γr,m
=K̂1

(
∂Dn

∂γr,m

)
11
+ K̂2

(
∂Dn

∂γr,m

)
22

+ K̂3

(
∂Dn

∂γr,m

)
33
+ K̂4

(
∂Dn

∂γr,m

)
12

+ K̂5

(
∂Dn

∂γr,m

)
13
+ K̂6

(
∂Dn

∂γr,m

)
23

(15)

where Dn = Q(θn)DH
r (γr)Q

T(θn). Finally, due to the map-
ping

∂Dn

∂γr,m
=

{
Q(θn)

∂DH
r

∂γr,m
QT(θn), if r = g(n)

0, otherwise
(16)

Sensitivity of homogenized elasticity tensor is derived us-
ing the periodicity of microstructure (Liu et al. (2002)). The
sensitivity of the volume constraint in Eqn. (5) is given by
vκ(r).

To avoid checker-boarding (Jog et al. (1994)), the fol-
lowing sensitivity filter (Sigmund (2007)) is used

∂̃C
∂γr,m

=
1

γr,m
∑

i∈Θm

Wmiγr,i
∂C
∂γr,i

(17)

where Wmi is cone type signed distance function, and Θm is
the set of neighboring micro-elements. Note that the filters
used for MTO must account for periodicity of microstruc-
tures (Xu and Cheng (2018)). Further, in order to obtain
solid/void designs, the filter radius is decreased from 4 to
1 (relative to micro-element width), in steps of 0.5, each
time the relative change in compliance drops below 1×10−4

in two consecutive iteration; this is an accepted practice in
SIMP to arrive at solid/void designs (Sigmund (2007)).

The ratio of sensitivities of objective and volume con-
straint is contained in the term

B(i)
r,m =−

( ∂̃C
∂γr,m

)(i)/
Λ

(i)vκ(r)

η

(18)

where Λ (i) is the Lagrange multiplier corresponding to the
volume constraint, η is the damping parameter set to 0.5,
and i is current iteration index. The design update is carried

out using the well-known optimality criteria method (Sig-
mund (2001)) utilizing Eqn. (18)

γ
(i+1)
r,m =

max
(

γ
(i)
r,m−ζ ,γ

)
if γ

(i)
n B(i)

r,m ≤max
(

γ
(i)
r,m−ζ ,γ

)
min

(
γ
(i)
r,m +ζ ,1

)
if min

(
γ
(i)
r,m +ζ ,1

)
≤ γ

(i)
r,mB(i)

r,m

γ
(i)
r,mB(i)

r,m otherwise

(19)

As is well known, microstructural designs are non-unique; a
small move parameter ζ prevents multiple holes appearing
and disappearing during optimization, improving stability;
here, the move parameter is set to 0.05. The lower limit γ

on design variables is 0.001. The Lagrange multiplier Λ (i)

is updated in an inner loop using binary search to satisfy the
volume constraint Sigmund (2001).

4.6 Algorithm

A flowchart depicting the proposed algorithm is illustrated
in Fig. 13. The algorithm can be divided into three distinct
phases, and these are described below.

The first phase starts with initialization and discretiza-
tion of design domain with macro and micro elements. Then,
variable-thickness design optimization is performed over the
macro-elements. This is followed by computation of princi-
pal strain ratio, and principal directions. The SIMP density
as well as the principal strain ratio, are exploited to perform
K-clustering. This divides the macro-elements into R clus-
ters. The micro density variables for each of the R clusters
are initialized as in Fig. 14, where the difference between the
two regions is 0.2, while the mean density of the microstruc-
tures is matched with the SIMP density. This ensures that the
sensitivity values do not vanish everywhere.

In the second phase, homogenization carried out for each
of the R microstructures, followed by macro-analysis. The
sensitivity is computed and filtered using Eqn. (17); the de-
sign variables are updated as described earlier. This process
is repeated until either the change in micro-variables is small
(here, 0.005), or the relative change in objective is small
(here, 5×10−6 ).

When the optimization terminates, the algorithm enters
the third phase where the microstructures are morphed and
mapped on a ten times finer mesh to ensure connectivity.
Then, a final analysis of the mapped design is performed by
agglomeration, as described earlier. In the following exam-
ples, the compliance values obtained using full-scale analy-
sis are reported in parenthesis along with the values obtained
using homogenization approach.
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Discretize design domain into
macro and micro elements

Perform variable-thickness design
optimization over macro-elements

Evaluate principal strain

Perform k-clustering to find R clusters

Initialize micro-design variables
for each of R microstructures

Compute elasticity tensors via ho-
mogenization for R microstructures

Macro-analysis using rotated elasticity tensors

Perform sensitivity analy-
sis and update design variables

Is termination criteria met?

Compute x̄ and ȳ for connectivity

Map microstructures

No

Yes

Phase 1 (Clustering)

Phase 2 (Optimization)

Phase 3 (Connectivity)

Fig. 13: Flowchart of proposed MTO algorithm.

Fig. 14: Microstructure initialization.

5 Numerical examples

5.1 Microstructural design validation

We consider an example from Zhang and Sun (2006) where
the rectangular design domain, illustrated in Fig. 15, is fixed

Fig. 15: Design domain and microstructure from Zhang and
Sun (2006).
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(a)

(b)

Fig. 16: Design comparison: (a) as illustrated in Zhang and
Sun (2006), and (b) obtained via proposed method.

on the left edge and a uniform shear load is applied on the
right edge. The domain is discretized into 16× 10 (macro)
elements which are then clustered into 10 different hori-
zontal layers. The top and bottom layers are made solid as
in Zhang and Sun (2006), and the remaining layers have
a distinct microstructure, leading to a total of 8 different
microstructures (using grid based clustering to be consis-
tent with the published result in Zhang and Sun (2006)).
Each macro-element is divided into 1600 micro-elements.
The Young’s modulus is 1000, and Poisson’s ratio is 0.3. No
connectivity is enforced among different microstructures. The
compliance is minimized for an overall volume fraction of
0.6.

The design obtained by Zhang and Sun (2006) is illus-
trated in Fig. 16(a), while the design obtained via the pro-
posed method is illustrated in Fig. 16(b). The compliance
for the design in Zhang and Sun (2006) was reported as
172171.8, while the compliance of the proposed design is
145583. For comparison, a full-scale analysis was performed
on the final design with 0.25 million elements, resulting in
a compliance of 147806. Thus, in this case, homogenization
leads to an error of less than 2%. The difference can be at-
tributed to the filtering method; the method used here leads
to a distinct solid/void design, resulting in a lower compli-
ance value. No finer mesh mapping is required because of
the absence of any morphing in this example.

5.2 Comparison of clustering methods

We will now compare the proposed density-and-strain based
clustering against grid-based clustering, and density-based
clustering. Observe that the clustering method only affects
phase 1 of the algorithm. The design domain is an L-bracket
(see Fig. 17(a)), discretized into 1600 macro-elements where
each macro-element is further divided into 1600 micro-elements.
The Young’s modulus is 10 and Poisson’s ratio is 0.3; the
number of clusters R is chosen to be 12 and desired global
volume fraction is 0.5.

For grid based clustering, adapting from Sivapuram et al.
(2016), the domain is divided into 12 regions as illustrated in
Fig. 17(b). The optimized design is given in Fig. 17(c). For
density-based clustering, first, variable-thickness design op-
timization is carried out (see Fig. 17(d)). This is used to form
clusters as illustrated in Fig. 17(e), resulting in the design
shown in Fig. 17(f). Finally, using the proposed density-and-
strain based method, the clusters are formed as illustrated in
Fig. 17(h), while Fig. 17(i) illustrates the final design.

The convergence plots for the three cases are illustrated
in Fig. 18. The staircase shape obtained in convergence his-
tory is due to the change in sensitivity filter radius. The com-
pliances and computational costs are summarized in Table 2.
As expected, the compliance from the proposed method is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 17: L-bracket to perform cluster based MTO. (a) Design domain; grid based clustering: (b) clusters and (c) design;
density based clustering: (d) density from variable-thickness design optimization, (e) clusters, and (f) design; combined
density-and-strain based clustering: (g) density from variable-thickness design optimization and principal strain, (h) clusters,
and (i) design.

Table 2: L-bracket:final objective and computation time; the quantity within parenthesis is obtained by a full-scale analysis
of the final design, without homogenization.

Clustering Type Final Objective Iterations Computation Time (s) Avg. Time per Iteration (s)
Grid 3096.4 (3238.7) 115 592 6.1

Density 1936.4 (2086.50) 67 424 6.3
Density-and-strain 1717.3 (2056.02) 48 586 12.2



14 Tej Kumar, Krishnan Suresh

Fig. 18: Convergence history for the three types of clustering.

better than the other two using homogenization with no sig-
nificant increase in computational cost. The mesh for full
scale analysis consists of 2.56 million elements.

For further validation, consider a bridge problem shown
in Fig. 19(a). The Young’s modulus is 2.1× 105 and Pois-
son’s ratio 0.3. The design domain is shown in Fig. 19(b)
having a point force of 1000, wheras the contours of x̃ and
ỹ along with the principal directions are shown in figs. 19(c)
to 19(e). The optimization results are shown for density (see
fig. 19(h)) and density-and-strain based (see fig. 19(k)) clus-
tering methods with objective values 418.08 (490.53) and
342.26 (466.95), respectively. The improved compliance val-
ues in the these two examples validate the superiority of
density-and-strain based clustering over density based clus-
tering. The full scale analysis is performed on a 800×1600
mesh.

5.3 Effect of number of clusters and comparison against
SIMP design

Here, we compare and show the benefit of proposed method,
against variable thickness and SIMP (p = 3) designs; we
will also study the effect of the number of clusters. As an
example, we consider a short cantilever beam with mid-edge
load on the right edge illustrated in Fig. 20. The domain
is discretized into 800 macro-elements, where each macro-
element is subdivided into 1600 micro-elements. The Young’s
modulus is 2.1×105, Poisson’s ratio is 0.3, and desired vol-
ume fraction is 0.5.

The designs from variable-thickness and SIMP (p = 3)
optimization performed on macro-element discretization, are
illustrated in Fig. 21(a) and 21(b), respectively. Designs ob-
tained for various choices of number of clusters using the
proposed method are illustrated in the Figures 21(c) to 21(f).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Fig. 19: Bridge problem: (a) problem domain, (b) design domain; Auxiliary fields: (c) direction n1 and x̄, (d) direction n2 and
ȳ, (e) x̄ and ȳ; density based clustering: (f) density from variable-thickness design optimization, (g) clusters, and (h) design;
combined density-and-strain based clustering: (i) density from variable-thickness design optimization and principal strain,
(j) clusters, and (k) design.

Fig. 20: Short cantilever fixed on the left edge and loaded on
the center of right edge. Length of line of load = 8.

Table 3 summarizes the results for different cases. An in-
crease in compliance in full-scale analysis (performed on a

800× 1600 mesh) is expected since we are distorting the
generated microstructures. However, the large disparity in
the two numbers may be attributed to a lot of gray elements
and imperfect morphing, which requires further work. No-
tice that the increase in number of clusters enhances the per-
formance, but it does not approach the variable thickness de-
sign or surpass SIMP (p = 3) design in full-scale analysis.
This is attributed to clustering performed only once at the
start of the optimization process. Dynamic clustering may
lead to improved performance, and will be pursued in fu-
ture. Further, the poor performance for 3 cluster case is due
to the assignment of all the macro-elements to one cluster
except for those assigned to the two constrained ( with vari-
able thickness design density close to 0 or 1) clusters. As
expected, the average time per iteration increases with in-
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(a) (b)

(c) (d)

(e) (f)

Fig. 21: (a) Variable-thickness design (b) SIMP (p = 3) design. Designs with different number of clusters: (c) R = 3, (d)
R = 5, (e) R = 10, and (f) R = 15.

Table 3: Compliance for short cantilever beam with mid-edge load.

Figure Type Number of Clusters Compliance Iterations Avg. time per iteration (s)
21(a) Variable thickness design - 10.335 82 0.03
21(b) SIMP (p = 3) design - 11.86 51 0.06
21(c) Clustered design 3 12.07 (14.10) 49 5.57
21(d) Clustered design 5 11.49 (13.0) 49 5.73
21(e) Clustered design 10 11.38 (12.84) 58 5.82
21(f) Clustered design 15 11.34 (12.74) 50 5.96

crease in the number of clusters. In case of no-clustering
i.e. clusters equal to number of macro-elements (800 in this
case), the average time per iteration blows up to 22 minutes.

6 Conclusion

In this paper, a generic MTO formulation is provided which
encompasses most of the MTO problems in published lit-
erature. The challenges associated with MTO such as large

computational cost and loss of connectivity due to the pres-
ence of microstructures are tackled in the proposed method.
This comprises of three distinct phases: clustering, optimiza-
tion and connectivity. In the first phase, a novel combined
density-and-strain based clustering method is proposed to
divide macro-elements into a pre-defined number of clus-
ters. During the next phase, rotated microstructures are op-
timized for minimizing the compliance. These rotations are
based on principal directions. In the final phase, connectiv-
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ity of rotated microstructures are ensured by solving a pair
of linear system to define a transformation field. This field
is used to project computed microstructures into the design
domain.

The proposed clustering method is demonstrated to per-
form well for small number of clusters. Its superiority as
compared to other clustering methods has been demonstrated.
K-clustering is used to tackle clustering of two-dimensional
parameter involving density ρ and principal strain ratio (εII/εI)

2.
The anisotropic nature of microstructures are effectively uti-
lized by adding the rotational degree of freedom. A simpler
method of handling microstructure connectivity for rotated
microstructures is proposed as compared to existing meth-
ods. The effectiveness of proposed method is also mani-
fested by fewer number of iterations required for conver-
gence.

There are certain aspects of the work which needs to be
pursued in future. Starting with a dynamic clustering scheme
to redistribute clusters according to evolving design and strain
field, which is likely to improve the performance further. A
smooth variation is not obtained in the presence of singu-
larity in strain directions as shown by Allaire et al. (2018)
and therefore, the auxiliary coordinate system distorts in the
neighborhood of singularity. An approach to identify and
handle these singularities will be dealt in future along with
extending this work to 3D and for objectives other than com-
pliance. Since density-and-strain based clustering and principal-
strain based rotation may not be applicable to non-compliance
problems, alternate strategies need to be explored.

Replication of results

The MATLAB code and data files required to replicate re-
sults presented here, are available at
http://www.ersl.wisc.edu/software/MTO_Code.zip.
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