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Abstract: Topology optimization (TO) has1

rapidly evolved from an academic exercise into an2

exciting discipline with numerous industrial applica-3

tions. Various TO algorithms have been established,4

and several commercial TO software packages are5

now available. However, a major challenge in TO6

is the post-processing of the optimized models for7

downstream applications. Typically, optimal topolo-8

gies generated by TO are faceted (triangulated) mod-9

els, extracted from an underlying finite element mesh.10

These triangulated models are dense, of poor qual-11

ity, and lack feature/parametric control. This poses12

serious challenges to downstream applications such13

as prototyping/testing, design validation, and design14

exploration.15

One strategy to address this issue is to directly im-16

pose downstream requirements as constraints in the17

TO algorithm. However, this not only restricts the18

design space, it may even lead to TO failure. Sep-19

aration of post-processing from TO is more robust20

and flexible. The objective of this paper is to provide21

a critical review of various post-processing methods,22

and categorize them based both on targeted applica-23

tions, and underlying strategies. The paper concludes24

with unresolved challenges and future work.25

1 Introduction26

Various design optimization methods are used to-27

day to solve engineering problems; these include28

size, shape and topology optimization. The fo-29

cus of this paper is on topology optimization [1–3],30

that often serves as a starting point for size and31

shape optimization. Topology optimization (TO) has32

rapidly evolved from an academic exercise into an33

exciting discipline with numerous industrial applica-34

tions. Popular applications include optimization of35

aerospace and aircraft components [4–9], automotive36
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components [10–12], biomedical devices [13–17] struc- 37

ture design [18–22], compliant mechanisms [23–26], 38

thermofluid applications [27–34], etc 39

To illustrate the concepts behind TO, consider the 40

structural problem posed in Figure 1 where the objec- 41

tive is to find the stiffest topology, i.e., topology with 42

the lowest compliance, within the given design-space 43

with 50% volume fraction. 44

Figure 1: A structural problem over a design space.

This can be solved rapidly today via any of the 45

well-known TO methods [35–44]. A typical optimized 46

topology is illustrated in Figure 2. 47

Figure 2: An optimized topology.

Rapid generation of such optimized designs is par- 48

ticularly beneficial during the early stages of the de- 49

sign process. However, one of the drawbacks of TO 50

is that the optimal topology, such as the one in Fig- 51

ure 2, is typically extracted as a faceted (triangulated) 52
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model, from the underlying finite element mesh, inde-53

pendent of the specific TO method. This extraction54

relies on classic isosurface methods such as marching55

cubes [45]; see Figure 3.

Figure 3: The faceted representation with noisy and
poor quality triangles.

56

The faceted models are often of poor quality, non-57

smooth, dense and lack feature/parametric control.58

For example, the faceted model in Figure 3 contains59

over 25,000 triangles, where, most of them are of60

poor quality. This is often exacerbated in real-world61

problems. As an illustration, for the TO challenge62

problem posed during 2019 Topology Optimization63

Roundtable Conference, Albuquerque [46], millions64

of elements are necessary to capture critical features.65

This results in faceted model with millions of trian-66

gles (see Figure 4). Such triangulated models are67

ill-suited for downstream applications such as proto-68

typing/testing, design validation, and design explo-69

ration.70

Figure 4: A TO model with millions of triangles.

Most TO commercial packages do not have au-71

tomated tools for post-processing. Post-processing72

is loosely defined here as the process of converting73

the faceted TO models into other geometric repre-74

sentations that are more suitable for various down-75

stream applications. Such geometric representations76

include skeletal representation, simplified triangu-77

lated model, NURBS-representation, volume decom-78

position and so on. Thus post-processing strate-79

gies can range from simple remeshing, to extraction80

of skeleton, and fitting of analytic surfaces. Some81

of the early commercial packages relied on man- 82

ual tracing of the TO model for reconstruction, i.e., 83

the faceted models are superimposed over the design 84

space, and the geometry is reconstructed via sketch- 85

ing and Boolean operations. This is laborious and 86

error-prone. However, some commercial systems are 87

beginning to support post-processing with various de- 88

gree of success. The most common strategy used in 89

commercial systems is surface based reconstruction 90

(see Section 4 for a description). PTC Creo R© uses 91

subdivision technique, while Evolve R© and Rhino R©, 92

MeshMixer R© use Non-Uniform Rational B-Splines 93

(NURBS) based reconstruction. Fusion 360 Gener- 94

ative Design relies on T-splines to generate multi- 95

ple watertight CAD models that satisfy designer’s re- 96

quirements. None of these tools efficiently generate 97

a parametric feature based CAD model that meets 98

all downstream requirements discussed in the subse- 99

quent section. 100

A survey was conducted among users of a 101

free topology optimization service (cloudtopopt.com) 102

[47], sponsored by the National Science Foundation 103

(www.nsf.gov). One of the questions posed to the 104

users was: Rank what would you like topology op- 105

timization software to include in order of prefer- 106

ence? Five specific choices were provided, with one 107

open choice. Among the 85 responses received, 49% 108

choose: Generate feature-based CAD model of the op- 109

timized design; see Figure 5. Lack of automated tools 110

for model reconstruction can be a serious detriment 111

to broader acceptance and proliferation of TO. 112

Figure 5: Results from a survey of TO users.

Researchers have proposed several strategies and 113

methods to address this challenge. Prior to dis- 114

cussing these strategies, we consider three important 115

downstream applications in Section 2, and summa- 116

rize their requirements. Then, in Section 3 we con- 117

sider proposed methods that attempt to meet these 118

downstream requirements by directly incorporating 119

them as constraints in the TO algorithm. These di- 120
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rect methods, however, have limitations. In Section121

4, we consider post-processing methods that rely on122

a combination of design rules and computational al-123

gorithms. For pedagogical reasons, these are further124

categorized based on the underlying dimension. Con-125

clusions and future work are discussed in Section 5.126

2 Downstream Applications127

In this section, we consider three representative128

downstream applications, namely, prototyping, vali-129

dation and (design) exploration, as illustrated in Ta-130

ble 1. These three applications are representative and131

not exhaustive. Further, since the requirements for132

these applications overlap, these are best represented133

via a Venn diagram as in Figure 6. For example, ”fea-134

ture control” is essential for design exploration, but135

not necessary for validation and prototyping. How-136

ever, ”retaining critical features” is essential for all137

three applications. These requirements are further138

elaborated below, and will be used later to evaluate139

different post-processing methods and strategies.140

2.1 Prototyping141

The simplest downstream application is prototyping142

and testing; the objective is to fabricate the TO143

model for testing, inspection and evaluation. A pri-144

mary requirement is that critical features, edges and145

surfaces must be retained for repeatable testing. For146

example, if a load is applied on a cylindrical feature in147

the initial design, then this surface will be critical for148

prototyping and testing. Secondly, non-critical sur-149

faces must be smooth, both for aesthetic and testing150

purposes. Finally, the recovered model must meet151

the constraints of the fabrication process. For ex-152

ample, for conventional milling, tool accessibility is153

important; for certain additive manufacturing pro-154

cesses, overhang surfaces must be avoided, and so on.155

However, parametric representation of the model, for156

example, is not critical for prototyping.157

2.2 Design Validation158

The second critical application is design validation159

where the TO model must be validated through anal-160

ysis methods such as finite element analysis (FEA).161

FEA models used within TO are often vastly sim-162

plified, for example, they often rely non-conforming163

voxel mesh to accelerate FEA. To support rigorous164

FEA-based design validation, retaining critical fea-165

tures is once again important. In addition, one must166

be able to create a high-quality mesh that conforms167

to critical surfaces and features. This is more strin-168

gent than smoothness requirements for prototyping.169

Specifically, the recovered model should not contain170

sharp geometric features that could lead to erroneous171

simulation results. Finally, the reconstructed model172

must be functionally equivalent to the TO model in 173

that the behavior of the reconstructed model should 174

not differ significantly from that of the TO model. 175

2.3 Design Exploration 176

The final application, and often the lofty goal, is de- 177

sign exploration and productization. This is the most 178

demanding since the reconstructed model must be 179

(easily) editable by the designer to meet various func- 180

tional and manufacturing constraints. The model 181

must allow parametric changes (example: increas- 182

ing thickness of a strut), suppression/inclusion of 183

features, and be compatible with popular computer- 184

aided-design (CAD) packages. 185

3 Constrained Optimization 186

Although the objective of this paper is to survey 187

post-processing methods, we briefly review strate- 188

gies for imposing downstream requirements directly 189

as constraints within the TO algorithm; This serves 190

two purposes: (1) if the downstream requirements are 191

sufficiently simple, a constraint based TO may be suf- 192

ficient, (2) to highlight the deficiencies of constraint 193

based strategies. 194

Researchers have largely focused on including pro- 195

totyping and design exploration requirements in TO. 196

We are not aware of strategies to incorporate valida- 197

tion/analysis requirements (ex: high-quality surface 198

mesh) into TO. However, due to the overlap in re- 199

quirements, many of the techniques discussed below 200

can directly assist in efficient validation. The reader 201

is referred to [48] for a broader discussion on con- 202

strained based TO. 203

3.1 Prototyping Constrained TO 204

Researchers have proposed several methods to in- 205

corporate prototyping, i.e., manufacturing, con- 206

straints directly into TO to minimize post-processing. 207

Harzheim and Graf [49], [50] provide a review of early 208

work on TO for cast parts. Liu and Ma [51] present 209

a more recent survey on manufacturing focused TO. 210

Zuo et al. [52] incorporated machining constraints, 211

while Li et al. [53] imposed extrusion constraints, and 212

Lui et al. [54] have explored symmetry and pattern 213

repetition constraints in topology optimization. Li et 214

al. [55] incorporated multi-directional molding con- 215

straints in TO for cast parts. Vatanabe et al. [56] 216

incorporated constraints such as minimum size, sym- 217

metry, extrusion, turning, casting, forging and rolling 218

into the optimization. 219
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Table 1: Typical downstream applications of topology optimized designs.

Topology optimization of a clevis model.

Prototyping and Testing Design Validation Design Exploration

Figure 6: Requirements of model for different downstream applications
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Lui and Ma [57] performed least-square fitting220

of 2.5D and 3D machining-based features over the221

evolving boundary, while Groen and Sigmund [58]222

used homogenization method for generating manu-223

facturable microstructure based designs. Amir et al.224

[59] proposed an approach for simultaneously satis-225

fying physics based constraints (compliance, volume)226

as well as kinematics based constraints (manufactur-227

ing, accessibility). There has been significant inter-228

est recently in incorporating additive manufacturing229

(AM) [60] constraints in TO [61]. Doutre et al. [62]230

compare existing state-of-art tools to obtain CAD231

models from TO, specifically for AM. Lui and To [63]232

have used feature fitting on the TO design for addi-233

tive manufacturing. Leary et al. [64] identify bound-234

aries that require supports in additive manufactur-235

ing; these boundaries were then modified to gener-236

ate support-free structures. Amir and Suresh [65]237

used topological sensitivity to incorporate AM sup-238

port structure constraints in TO. Similarly, Mass and239

Amir [66], and Garaigordobil et al. [67, 68] incorpo-240

rated overhang constraints.241

A minimum-member-size for additive manufactur-242

ing has been used as a constraint in TO by Kwok et.243

al. [69]. Thin features and volume of support struc-244

tures have been added as constraints by Mhapsekar245

et. al [70]. Qian [71] added undercut control and246

minimal overhang angle as constraints in SIMP based247

TO.248

Similarly, Mezzadri et al. [72] and Matthijs [73] de-249

signed self-supporting support structures using TO250

for additive manufacturing of parts. Chandrasekhar251

et al. [74] proposed a methodology to incorporate252

build direction, and fiber orientation into a TO for-253

mulation for short fiber reinforced polymers compo-254

nents. Stuben et.al [75] use multiscale TO to gener-255

ate 2D designs for additive manufacturing. See Lui256

et al. [76] for an extensive review on TO for AM.257

3.2 Design Exploration Constrained258

TO259

Next we consider strategies to include design explo-260

ration requirements into TO. Bendsoe and Rodrigues261

[77] explored the idea of using TO models as a pre-262

cursor to shape optimization in 2D. Olhoff N. [78]263

was one of the earliest to propose CAD-integrated264

TO to reduce design lead time. Zhou and Wang265

[79] combined CSG with topology/shape optimiza-266

tion to generate free-form geometric designs. Chen267

et. al [80] proposed a B-spline based method for com-268

bined shape and topology optimization. Tang and269

Chang [81] presented an integrated approach to com-270

bine topology optimization and shape optimization271

using B-splines to represent the boundaries. Lin et272

al. [82] used image processing to convert the gray- 273

scale results of TO to obtain a parametric geometry 274

in 2D. Zhang and Kwok [83] performed TO over a 275

parametrized 2D mesh obtained by mapping a 3D 276

domain onto a 2D domain. The optimized results are 277

then mapped back to obtain a 3D geometry. Sim- 278

ilarly, Christiansen et al. [84] combined shape and 279

topology optimization for 3D structures using explicit 280

shape representation. 281

Another popular strategy to support design explo- 282

ration is to directly incorporate design features dur- 283

ing TO. Guo et al. [85], Zhang et al. [86], [87] have 284

used moving morphable components to represent the 285

boundaries of TO designs. The size, shape, and orien- 286

tations of these components are used as variables dur- 287

ing topology optimization to generate designs with 288

predefined features. Bell et al. [88] and Norato et 289

al. [89] used parametrically-defined bars, while Zhang 290

et al. [86] used parametrically-defined bars and plates 291

to obtain TO designs. Lin et al. [90] used NURBS 292

to represent the boundary of features arising during 293

TO. Holes represented by NURBS are inserted in the 294

design domain and their control points are used as de- 295

sign variables to generate parametrically-defined TO 296

geometry. Gao et al. [91] replaced discrete density 297

field by NURBS and then imposed user defined ge- 298

ometric constraints during topology optimization of 299

beams and plates. Zhang et al. [92] traced the topo- 300

logical changes in the geometry using B-Splines to 301

construct free-form shapes. Norato [93] used union 302

of 2D super-shapes to generate free-form geometry. 303

Da et al. [94] used bi-directional evolutionary struc- 304

tural optimization (BESO) with level set function to 305

generate results with smooth boundaries. Jahangiry 306

et. al [95], Kang et al. [96], Seo et al. [97] and more 307

recently, Gai et al. [98] have used spline based iso- 308

geometric analysis for Topology Optimization. Gao 309

et al. [99] have used density distribution function 310

(DDF) for isogeometric Topology optimization to ob- 311

tain smooth NURBS surface in 2D and 3D. 312

More recently, machine learning algorithms have 313

been applied towards post-processing of TO models. 314

For example, Sosnovik and Oseledets [100] trained 315

their neural network using image segmentation to ob- 316

tain final designs from intermediate results of TO, 317

thereby reducing the computational effort. Shen and 318

Chen [101] and Rawat and Shen [102, 103] proposed 319

a conditional generative adversarial network (GAN) 320

to incorporate design constraints such as minimum 321

radius in TO of planar structures. Lei et. al [104] 322

used support vector regression (SVR) and K-nearest- 323

neighbour (KNN) models to predict topology opti- 324

mized designs. 325
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3.3 Benefits and Limitations326

Adding downstream constraints directly into TO327

eliminate the need for expensive post-processing. In-328

deed, this may be a practical and viable option in329

simple scenarios. However, there are several limita-330

tions to these strategies:331

1. Reduced design space: Adding constraints nec-332

essarily reduces the design space, and conse-333

quently, the performance of the optimized de-334

sign.335

2. Computational challenge: Adding constraints336

can significantly increase the cost of TO; further,337

the optimization may even fail if improper con-338

straints are imposed.339

3. Lack of generality: The strategies are often lim-340

ited in scope; for example, the extension of341

feature-based strategy to 3D is an open chal-342

lenge, and not all manufacturing processes can343

be imposed as a constraint. Further, most meth-344

ods involve manual intervention and expertise to345

generate the CAD geometry.346

4. Lack of flexibility: Finally, since constraint-347

based strategies often target a particular appli-348

cation, exploring other options is often not viable349

once the optimization is complete.350

Thus, one must resort to post-processing of TO351

models, and this is discussed next.352

4 Post-Processing Strategies353

As one can expect, different post-processing strate-354

gies fulfill different requirements. For example, if355

the downstream application is finite element analy-356

sis, then post-processing the surface mesh, while im-357

posing geometric and quality constraints may be suf-358

ficient. On the other hand, for design exploration,359

recreating a CAD-compatible parametric model will360

be necessary, and so on.361

Post-processing strategies can be classified based362

on the underlying dimension as in Table 2. Specifi-363

cally, if the post-processing is based on first extract-364

ing a lower-dimensional skeleton, it is classified as 1D.365

If the strategy relies directly on post-processing the366

triangulated surface, it is classified as 2D. Finally, if367

the strategy relies on volume decomposition of the368

TO model, it is classified as 3D. Similar classification369

strategies have been proposed by Fabio [105] for re-370

construction of geometry from cloud data points and371

by Thakur et al. [106] for CAD model simplification.372

As stated earlier, skeleton based post-processing is373

largely limited to thin beam-like TO designs. In ad-374

dition, two recurring challenges here are: (1) robust375

Figure 7: Geometry reconstruction using skeleton.

handling of junctions where skeletal branches meet, 376

and (2) extraction of cross-sections. 377

4.1 Surface Based (2D) 378

The second, and probably the most common, cat- 379

egory of post-processing is surface reconstruction. 380

There are three fundamentally different surface- 381

based methods: remeshing, sub-division, and surface- 382

fitting. In remeshing, one directly creates an im- 383

proved triangulation from TO triangulation. In sub- 384

division, a predefined set of rules are used to recreate 385

a discretized surface (triangles and quads) that best 386

fits the original surface. Finally, in surface-fitting, 387

the triangulation is replaced by a parametric surface 388

(such as NURBS) or analytical surface (such as a 389

cylinder). 390

4.1.1 Remeshing 391

Remeshing creates an improved triangulation from a 392

potentially noisy triangulation, or sampled (scanned) 393

data [107]. There are two popular methods of remesh- 394

ing: implicit and explicit, and there are several imple- 395

mentations; for example, see PMP [108] and Instant- 396

Meshes [109]. 397

Implicit remeshing methods rely on constructing 398

a smooth scalar field from the input triangulation; 399

the scalar field is then used to recreate a high-quality 400

re-triangulation. For example, Kazdhan [110] pro- 401

posed the Poisson reconstruction method to gener- 402

ate water-tight meshes. Implicit methods often re- 403

sult in undesirable smoothening of sharp edges. At- 404

tene et al. [111] proposed an edge-sharpener algo- 405

rithm while Nielson et al. [112] used dual marching 406

cubes to recover shape features from the triangulated 407

models. Thomos et al. [113] modified marching cubes 408

tables for topological guarantees. Although implicit 409

methods are robust, numerically stable and generate 410

water-tight models, they can be computationally ex- 411

pensive, and are non-local, i.e., small defects in one 412

region can affect the triangulation globally. 413
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Table 2: Proposed classification of post-processing strategies

Classification Skeletal (1D) Surface (2D) Volume(3D)

Underlying tech-
nique

Reconstruction via
skeleton

Surface fitting
and/or mesh
simplification

Volume
decompostion and
approximation

Reconstruction
process

(a) (a) (a)

(b) (b) (b)

(c) (c) (c)

Strengths Well suited for
beamlike models

Relies on popular
remeshing methods

Ideal for suppressing
small features

Applicable to all
downstream
applications

Applicable to all TO
models

Easy to retain
critical features

Weaknesses Handling of
junctures

Stitching of gaps,
and retaining sharp
features

Not suited for
complex TO models

Not suitable for all
TO models

Automation Automation
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Explicit remeshing methods often rely on Delau-414

nay triangulation of point data [114], [115]. Dey and415

Goswami [116] proposed a water-tight remeshing al-416

gorithm. Explicit methods are local, and easy to417

implement but are less stable [117]. Figure 8 illus-418

trates remeshing of triangulated surface into a tri-419

angular/quad mesh. This reconstruction was per-420

formed using Poisson surface reconstruction [110] im-421

plemented in Meshlab R© v2016.12 ; the processed ge-422

ometry is smoother and contains a fewer number of423

triangles/quads.424

Figure 8: Remeshing of triangular meshes using
screened Poisson surface reconstruction

4.1.2 Fitting425

The objective of surface fitting is to replace the tri-426

angulation with either analytical primitives such as427

planes, spheres, cylinders, etc. or parametric sur-428

faces such as NURBS. The techniques discussed be-429

low are often used in the context of scanned data [118]430

but directly apply to TO post-processing (especially431

parametric surface fitting). Figure 9 demonstrates432

smoothing and fitting of the TO model using NURBS.433

The fitting was performed using Rhino R© 6, released434

in February 2018. Control points generated through435

surface fitting provide local control over the surface.436

Fitting primitives only applies when the underly-437

ing surface is analytic. Several methods have been438

proposed to fit analytic surfaces. Li et al. G. Yi, B.439

D. Youn, and N. H. Kim [119] fit basic geometric fea-440

tures such as lines, arcs, circles, fillets, extrusion and441

sweep on boundary extracted from a topology opti-442

mized design. [120] proposed Globfit algorithm to re-443

cover a set of locally fitted primitives. Schnabel [121]444

proposed an efficient RANSAC algorithm to recover445

analytic shapes from noisy input models.446

In parametric surface fitting, NURBS are often447

used to fit the triangulation. Joshi,et al. [122] cre-448

ated an open source tool that fits a NURBS surface449

over the mesh using least square fitting. Non-design450

features are then added manually to the resulting451

surfaces. Continuity between multiple patches was 452

not discussed. Lui et al. [123] used adaptive B-spline 453

fitting of the surface. The resulting geometry is a 454

smooth parametric model suitable for further shape 455

optimization and targeted for additive manufactur- 456

ing. Chacon et al. [124] developed a software tool 457

that fits B-Splines on the boundaries of 2D Topology 458

optimized designs and converts them to IGES format 459

for CAD compatibility. 460

Koguchi and Kikuchi [125] used marching cube 461

based iso-surface extraction algorithm to construct 462

biquartic surface splines. The parametric model pre- 463

serves all critical features such as flat surfaces and 464

sharp edges. The resulting geometries require further 465

processing to make them manufacturable. 466

Marsan and Dutta [126], extracted smooth con- 467

tours layer-by-layer. These contours are then used 468

to fit spline surfaces with C1 continuity. This 469

method works for post-processing of models with 470

holes/branches, but it fails to retain critical features 471

and surfaces. Yoely, et al. [127] use B-splines to rep- 472

resent the boundaries of topology optimized designs 473

for generating parametric 2D geometries. Similarly, 474

W. Zhang, L. , T. Gao, and S. Cai [92] make use of 475

closed B-Splines curves to trace optimum topology in 476

2D geometries. 477

Figure 9: NURBS surface fitting with control points

A common challenge in surface fitting are gaps be- 478

tween surfaces. Various hole-filling approaches have 479

been proposed. Zhao et al. [128] proposed an advanc- 480

ing front method. Branch et al. [129] used a local ra- 481

dial basis function to fill the space with B-spline sur- 482

faces. Curless et al. [130] used volumetric diffusion 483

method to fill gaps. Liepa [131] combined remesh- 484

ing and fairing method to smoothly bridge surface 485

meshes. 486

4.1.3 Subdivision 487

Subdivision surfaces were introduced as an alterna- 488

tive to NURBS modeling. A subdivision surface is 489

a representation of smooth surface over a piece wise 490
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linear polygon mesh similar to Bezier curve in 2D.491

A smooth surface is achieved by iterative subdivision492

scheme, defined by a set of rules. Geometry recon-493

struction based on subdivision surfaces is illustrated494

in Figure 10 using PTC Creo R© 6.0.1.0. The sub-495

division is semi-automated and the surface maintains496

connectivity with non-design features, while retaining497

critical surfaces and edges.498

Catmull-Clark subdivision [132] creates new ver-499

tex points using the face points and edge points.500

These new vertex points are then connected for each501

quadruple to create new face quadrilaterals. Though502

this method generates aesthetically pleasing surfaces,503

planar surfaces are often destroyed.504

Doo-Sabin [133] subdivision surfaces are created by505

replacing each vertex with face. The new faces cre-506

ated at the vertices are not necessarily planar. Few507

other subdivision based surface generation methods508

include Loop [134], mid-edge subdivision [135]. Sub-509

division surfaces offer a high level of user control, and510

can reproduce sharp edges and corners. Despite these511

advantages, maintaining second-order behavior near512

singularities is a major challenge for subdivision sur-513

faces, and for complex shapes, it is almost impossible514

to remove mesh singularities.515

Figure 10: Geometry reconstruction on TO design
with sub-division.

Marinov et al. [136] recently used non-uniform ra-516

tional Catmull-Clark (NURCC) surfaces [137] to con-517

vert generative design models to editable B-rep mod-518

els. The triangular mesh is separated out from the519

non-design solids and is approximated via NURCC520

surfaces. Replacing triangular meshes with quad521

mesh makes it easier for local editing of shapes. Non-522

design solid geometries are then merged with the523

NURCC surfaces to construct watertight models. Al-524

though the authors use generative design, the same525

concept could be applied to TO models. This is a526

significant step towards the automated generation of527

parametric CAD geometry from TO in product de-528

sign workflow. 529

4.2 Volume Based (3D) 530

The primary idea in volume based post-processing is 531

to reconstruct the model through volume decompo- 532

sition, and Boolean operations. For example, Hsu 533

an Hsu [138], Shu, et al. [139], extract representa- 534

tive cross sections from the topology optimized de- 535

signs. The boundary points are used as control points 536

to create B-spline boundary curves. Parametric 3D 537

solids are created in a CAD using sweeps through 538

these boundary curves. This method fails if there is 539

a significant difference in the shape/topology between 540

two successive boundary curves. 541

Cuillière, et al. [140, 141] separate out the non- 542

design from the design domain. The optimized de- 543

sign is then merged with the non-design features to 544

obtain the final geometry. This method retains crit- 545

ical features from the initial geometry. Connectiv- 546

ity between design and non-design features is a chal- 547

lenge since they are highly dependent on the mesh 548

size. Further, due the use of unstructured mesh, sym- 549

metry is lost in the optimized design. Larsen and 550

Jensen [142] used 2D shape template fitting to create 551

sweep geometries. These 3D solid bodies constructed 552

using sweep are subtracted from the initial design do- 553

main. The algorithm requires manual intervention to 554

fit different shapes. Recently Du. el.al [143] proposed 555

InverseCSG algorithm to convert 3D models to CSG 556

trees. 557

The methods discussed above work directly on the 558

TO models. Alternately, one can also work with the 559

voids (negative space) as illustrated in Figure 11. 560

This approach is preferable if the negative compo- 561

nents are simpler to approximate than the full TO de- 562

sign. Further, critical features can be easily retained. 563

This post-processing strategy on topology optimized 564

designs is currently being developed as a research tool 565

within Pareto [40]. 566

Volume based methods are effective only if the 567

TO design can be decomposed into simpler sweep- 568

representable volumes. Further, automatic identifica- 569

tion of source/target profiles and sweep path is non- 570

trivial. 571

5 Conclusions 572

Topology optimization continues to grow in impor- 573

tance, and is being increasingly adopted by the indus- 574

try to accelerate design. However, one of the road- 575

blocks is the efficient and automated post-processing 576

of topology optimized models for various downstream 577

applications. In this paper, we identified three major 578

applications and their requirements. For simple de- 579

signs, it may be possible to include downstream re- 580
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Figure 11: A classical cantilever beam topology opti-
mization problem with geometry reconstruction.

quirements as constraints in topology optimization.581

However, in more complex scenarios, post process-582

ing is unavoidable. Various post-processing strategies583

were reviewed, and classified based on the implicit di-584

mension.585

It is evident that research gaps remain. In skele-586

tal based (1D) methods, computing the cross-section,587

merging of skeletal branches and handling of patho-588

logical cases require significant manual intervention.589

In addition, skeletal methods largely apply to tubu-590

lar models. Surface based (2D) methods are the most591

advanced and promising. Among them, triangle-to-592

quad mesh conversion is the most popular since quad593

meshes are easier to edit. However, in practice, edit-594

ing of quad-meshes requires carefully defined geomet-595

ric constraints. Other challenges include presence of596

gaps between quad-patches, and retaining critical fea-597

tures. Volume based methods(3D) require TO mod-598

els to be decomposed to simpler disjoint volumes.599

While they offer unique advantages over the other600

two, we are not aware of robust implementations of601

3D methods.602
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