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Abstract Length scale control is imposed in topology optimization (TO) to make designs amenable to manufacturing

and other functional requirements. Broadly, there are two types of length-scale control in TO: exact and approximate.

While the former is desirable, its implementation can be difficult, and is computationally expensive. Approximate

length scale control is therefore preferred, and is often sufficient for early stages of design.

In this paper we propose an approximate length scale control strategy for TO, by extending a recently pro-

posed density-based TO formulation using neural networks (TOuNN). Specifically, we enhance TOuNN with a

Fourier space projection, to control the minimum and/or maximum length scales. The proposed method does not

involve additional constraints, and the sensitivity computations are automated by expressing the computations in

an end-end differentiable fashion using the neural net’s library. The proposed method is illustrated through several

numerical experiments for single and multi-material designs.

1 Introduction

Perhaps the most influential legacy of late Prof. Herb Voelcker is his work on the representations of solids [14]. In

this paper, we investigate representing solids through a concatenation of sinusoidal functions and neural network’s

activation functions, and exploiting this representation for length-scale control in topology optimization.

Topology optimization (TO) [4] is a design method which distributes material within a domain to minimize

an objective function, subject to constraints. Various constraints are often imposed to make the design amenable to

manufacturing and other functional requirements. One such set of constraints is to limit the maximum and minimum

length scale of structural members. Imposing a maximum length lmax will lead to desriable beam-like structures,

while imposing a minimum length lmin avoids extremely thin non-manufacturable members.

Several methods have been proposed to impose length scale control in TO (see Section 2). In this paper we pro-

pose length scale control by extending a density-based TO formulation using neural networks (TOuNN) proposed

in [6], [7]. Specifically, in Section 3, we enhance TOuNN with a Fourier space projection, leading to an approximate
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control on both the minimum and maximum length scales. The proposed method is illustrated through numerous

experiments in Section 5. Open research challenges, opportunities and conclusions are summarized in Section 6.

2 Literature Review

Popular TO methods today include density based methods ([4, 42]), level-set methods [39], and topological sen-

sitivity methods ([47, 10, 48]). For a comprehensive review, see [36, 9]. Among these, density based methods, with

solid isotropic material with penalization (SIMP) as the material model, is perhaps the most popular, and it serves

as a basis for this paper.

2.1 Topology Optimization using Mesh-Based SIMP

Consider the generic TO problem illustrated in Figure 1. In density-methods, one defines a pseudo-density ρ(x) ∈

(0, 1] over the domain, where ρ field is typically represented using an underlying mesh. Then, by relying on standard

SIMP material penalization of the form E = E0ρp, the field is optimized using optimality criteria [4] or MMA [49],

resulting in the desired topology, as illustrated in Figure 1.

? Discretize

Fig. 1: Classic TO using mesh-based SIMP.

Formally, the above TO problem can be posed as

minimize
ρ

uTK(ρ)u (1a)

subject to K(ρ)u = f (1b)

∑
e

ρeve ≤ V∗ (1c)

where u is the displacement field, K is the finite element stiffness matrix, f is the applied force, ρe is the density

associated with element e, ve is the volume of the element, and V∗ is the prescribed volume.

2.2 Length Scale Control in Topology Optimization

Length-scale control , i.e., controlling feature thickness orthogonal to the local orientation, is often imposed in

TO to make the design amenable to manufacturing and other functional requirements; see [25] for a review. Broadly,

there are two types of length-scale control: exact and approximate.

Exact length control implies that all features must lie precisely within the length scale specified. While this may

be desirable during the final stages of design, it is difficult to implement, computationally demanding and often an

overkill during early stages of design. The skeletal based minimum and maximum length scale control presented

in [57] is an exact length-scale strategy; practical challenges in imposing exact length-scale control were reported in

this work. Further, exact length scale can contradict imposed volume fraction constraint as explained later in Section
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5.4. Researchers have therefore turned towards approximate length scale control (see discussion below) since this is

often sufficient for conceptual designs, AM infills, micro-structural designs, etc.

Several approximate length scale controls methods have been proposed. Filtering schemes to eliminate mesh de-

pendency and indirectly control minimum length scale [41] is one the simplest approximate length-scale control

method. In [20], a projection filter with tunable support was suggested to control the minimum length scale. How-

ever, these filters result in topologies with diffused boundaries. A scheme for imposing maximum length scale was

developed in [19]. In this approach, the radius of a circular test region determines the maximum allowable mem-

ber size. However, the large number of nonlinear constraints can pose challenges. Therefore, the constraints were

aggregated using a p-norm form in [53, 54], within the context of infill optimization. The authors of [12] recently

introduced constraints for minimum and maximum member size, minimum cavity size, and minimum separation

distance. Apart from requiring a large number of elements to obtain crisp boundaries, the computation and storage

of these filters can also be expensive. While most of the filters discussed above directly apply on the design vari-

ables, the readers are referred to [45] for a discussion on filtering applied to sensitivities, and to [44] for imposing

manufacturing constraints using filters in TO.

Imposing approximate length scale control in the frequency domain has been suggested in [24] where a band pass

filter was constructed to impose both maximum and minimum length scale controls. While this avoids additional

constraints, the proposed method was restricted to rectangular domain, with non-rectangular domains requiring

padding. Other techniques using morphology filters [43], geometric constraints [58] robust length scale control [37]

have also been proposed. Physics-based length-scale strategies include an implicit strain energy approach [59], and

a quadratic energy functional [8].

The work described in this paper relies on a Fourier projection for length-scale control. The concept of using

Fourier basis functions is not new. It was first explored in [17] within a level-set formulation. It was later extended

to density-methods in [24] via explicit band-pass filters that control both the minimum and maximum length scales.

However, the authors noted that [24] ” ... it is applicable to regular rectangular domains only. Irregular domains can be

extended to rectangular ones by padding the design field with zeros, which can increase the computational cost associated with

the filter.” This was then generalized to non-rectangular domains in [52], where the authors noted that ”...[Fourier

projection] decouples the geometry description, and hence the decision variables, from the finite element mesh.”

In this paper, we once again use Fourier projection for length-scale control. However, instead of directly using

the Fourier coefficients as design variables, a neural network (NN) is used here to control these coefficients. A few

advantages of this approach are: (1) the framework can be easily extended to, say, multiple-materials, without in-

creasing the number of design variables, (2) one can extract high resolution topology, without increasing the compu-

tational cost, and (3) one can leverage the NN’s built-in optimizer and back-propagation capabilities for automated

sensitivity computations.

2.3 Topology Optimization using Neural Networks

The proposed method builds upon the TOuNN framework [6] that we briefly review. Consider once again a

generic TO problem in Fig 2. As in mesh based density methods, we define a pseudo-density field ρ defined at all

points (x, y) within the domain. However, instead of representing ρ using the mesh, it is represented here using a

fully-connected neural network (NN). In other words, ρ is spanned by NN’s activation functions and controlled by
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the weights w within the NN. Then, by relying on SIMP material model, the density is optimized using the NN’s

built-in optimizer to respect the imposed volume constraint Vc , while minimizing the compliance J, to result in the

desired topology; see Figure 2. Thus, as noted in [52], the representation scheme for the density field is independent

of the mesh. However, the representational parameters, i.e., the weights, indirectly depend on the mesh, through the

discrete solution to the state equation, as described in the remainder of the paper.

NN(w)

FEA

Optimize (w)

?
x

y
Loss function

J

<latexit sha1_base64="YZ+yzDFpkOdP7iGsbyOKR1w4Y14=">AAACAnicbVDLSsNAFL2prxpfVZduBovgqiQi6rLoxmVFWwttKJPJpB06MwkzE6GE7ty61X9wJ279EX/Br3DaZmFbD1w4nHMvnHvClDNtPO/bKa2srq1vlDfdre2d3b3K/kFLJ5kitEkSnqh2iDXlTNKmYYbTdqooFiGnj+HwZuI/PlGlWSIfzCilgcB9yWJGsLHSfatHepWqV/OmQMvEL0gVCjR6lZ9ulJBMUGkIx1p3fC81QY6VYYTTsdvNNE0xGeI+7VgqsaA6yKdRx+jEKhGKE2VHGjRV/17kWGg9EqHdFNgM9KI3Ef/1QmFlFCY8cucTmPgqyJlMM0MlmQWIM45MgiZ9oIgpSgwfWYKJYvYHRAZYYWJsa64tx1+sYpm0zmr+Rc27O6/Wr4uaynAEx3AKPlxCHW6hAU0g0IcXeIU359l5dz6cz9lqySluDmEOztcvU0yWmw==</latexit>

Vc +

Fig. 2: TOuNN framework [6].

As illustrated in Figure 3, the NN typically consists of several hidden layers (depth); each layer may consist of

several activation functions such as LeakyReLU [18], [27] coupled with batch normalization [21]. By varying the

height and depth, one can increase the representational capacity of the NN. The final layer is a softMax function that

scales the output to values between 0 and 1.
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Fig. 3: The architecture of the neural net in the simple TOuNN framework [6].

Formally, in TOuNN, the topology optimization problem is posed as:

minimize
w

uTK(w)u (2a)

subject to K(w)u = f (2b)

∑
e

ρe(w)ve ≤ V∗ (2c)
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where w are the weights associated with the NN. Note that TOuNN relies on SIMP penalization of the form E =

E0ρp to drive the density field towards 0/1.

The key characteristics of TOuNN are [6]:

1. The design variables are the NN weights w.

2. The field ρ(x) is infinitely differentiable everywhere in the domain.

3. The sensitivities are computed analytically using NN’s back-propagation.

4. Optimization is carried out using NN’s built-in optimizer.

3 Proposed Method

In theory, one can capture any density field in TOuNN by simply increasing the number of weights and tuning

them appropriately. However, for reasons discussed in [34], standard NNs fail to efficiently capture high frequencies.

This has been reported, for example, in capturing volumetric density [30], occupancy [28], signed distances[32].

Analysis shows that the eigenvalue spectrum of these networks decay rapidly as a function of frequency [50]. To

alleviate this problem, projecting the input spatial coordinates to a Fourier space was proposed in [50]. With this as

motivation, the proposed architecture of the Fourier enhanced NN for TO is illustrated in Figure 4.
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Fig. 4: The architecture of the proposed neural net for 2D problems.

The critical features of the proposed Fourier-TOuNN framework are:

1. Input Layer: As before, the input to the Fourier-NN is any point x = (x, y) ∈ R2 in the domain.

2. Fourier Projection Layer: This layer is the focus of the current work. The 2 dimensional Euclidean input is

transformed to a 2n f dimensional Fourier space (see Section 3.1), where n f is the chosen number of frequencies.

The range of frequencies is determined by the length scale controls:

f ∈
[ h

lmax
,

h
lmin

]
(3)
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where h is the mesh edge length. Further, in this paper, the frequencies are uniformly sampled within the speci-

fied interval.

3. Hidden Layers: The output from the projected Fourier space is piped into a single layer of neurons (compared

to multiple layers in Figure 3). This hidden layer is important in that it introduces an essential non-linearity.

As in TOuNN, each of the neurons is associated with an activation function such as leaky-rectified linear unit

(LeakyReLU), i.e., LRε(x) = max(0, x) + εmin(0, x). Batch normalization is used for regularization.

4. Output Layer: The final layer consists of one neuron with a Sigmoid activation function, ensuring that the output

density lies between 0 and 1.

In summary the output density (ignoring batch normalization) can be expressed as:

ρ =
1

1 + exp
(
−∑

j
wjLRε

j
( n f

∑
i=1

wij cos(π
h ( f x

i x + f y
i y)) +

2n f

∑
i=n f

wij sin(π
h ( f x

i x + f y
i y))

)) (4)

where LRε
j represents the LeakyReLU operator.

3.1 A Simplified Scenario

To comprehend the transformations within the Fourier-TOuNN netowrk, consider a simplified version in Figure

5, where we limit the input dimension to 1, the frequency terms are limited to 2, and only one LeakyReLU neuron is

used. The output is a single Sigmoid function as before. Then, the closed form expression for density simplifies to:

ρ(x) =
1

1 + exp(−w3LRε(w1 cos(π
h f x

1 x) + w2 cos(π
h f x

2 x)))
(5)

x
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Fig. 5: Simplified representation of Neural Network with Fourier Projection.

Consider an instance where w1 = 8, w2 = 10, w3 = 4, f x
1 = 1 and f x

2 = 6. Figure 6 illustrates the different stages

of the transformation. The plot on the top left is a simple linear combination of the two frequencies, while the plot on

the top right is the output from the LeakyReLU function, which is essentially a linear transformation in the positive

region, but that thresholds the negative valyes to −ε. The Sigmoid (bottom right) further thresholds the output to

(0, 1]. The plot on the bottom left is the Fourier decomposition of the density field. As expected, the peaks are at the

specified frequencies of 1 and 6, but spread out. This spreading of the frequencies is discussed, for example, in [50].

One can expect similar behavior in higher dimensions, and for a larger set of frequencies. Note that the Sigmoid
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output can be anywhere in the range [0, 1]. However, since we use SIMP as a material model within the proposed

optimization method, intermediate densities are penalized, driving the output towards 0/1 [11].

Fig. 6: Different stages of transformation in a Fourier-TOuNN.

3.2 Finite Element Analysis

Although the density field is represented using the NN, a finite element mesh is needed to capture the underlying

physics. Here, we use regular node quad elements, and fast Cholesky factorization based on the CVXOPT library

[1]. During each iteration, the density at the center of each element is computed by the NN, and is provided to the

FE solver. The FE solver computes the stiffness matrix for each element, and the assembled global stiffness matrix is

then used to determine the field u and the unscaled element compliances:

Je = {ue}T [K]0{ue} (6)

The total compliance is given by:

J = ∑
e

ρ
p
e Je (7)

where p is the usual SIMP penalty parameter.

3.3 Loss Function

While many optimization methods have been proposed for use within NN (see [38]), we use the Adam optimizer

[22], a gradient based optimization algorithm implemented within PyTorch. Adam optimization is designed to min-

imize an unconstrained loss function. In a volume constrained compliance minimization problem, it is reasonable to

assume that the volume constraint in Eq. 2c is active [46] , i.e., it can be treated as an equality constraint. This would

allow the use of a simple penalty method of optimization as discussed below. Towards this end, we convert the

constrained minimization problem in Equation 2 into an unconstrained loss L using a penalty formulation [31]:
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L(w) =
∑
e

ρ
p
e Je

J0
+ α

(∑
e

ρeve

V∗
− 1
)2

(8)

where J0 is the initial compliance (for scaling), p is the SIMP penalization parameter and α is the constraint penalty.

As described in [31], starting from a small positive value for the penalty parameter α, a gradient driven step is taken

to minimize the loss function. Then, the penalty parameter is increased and the process is repeated. Observe that, in

the limit α→ ∞, when the loss function is minimized, the equality constraint is satisfied and the objective is thereby

minimized.

3.4 Sensitivity Analysis

The Adam optimizer, being a first-order method, requires gradient information. In order to compute the sensi-

tivity of the loss function (that is being minimized) with respect to the design variables, note that: (1) the design

variables are the weights of the NN (instead of the element densities as in standard element-based TO), (2) the loss

function comprises of the compliance and volume constraint through a penalty formulation.

With these observations, the sensitivity of the loss function with respect to any design variable wi is given by:

∂L
∂wi

= ∑
e

∂L
∂ρe

∂ρe

∂wi
(9)

The term ∂ρe
∂wi

is the sensitivity of element density with respect to the weights. Since the NN is nothing but a compu-

tational graph consisting of weighted sums and nonlinear activations, automatic differentiation [3] can be used to

efficiently and accurately compute these terms. In particular, we utilize the automatic differentiation within PyTorch

[33] in our implementation.

However, since the finite element solver is outside of the neural network, the sensitivity of compliance with

respect to the density variables must be computed analytically. Thus, the sensitivity of the loss function with respect

to element density, i.e., ∂L
∂ρe

, is obtained by differentiating Equation (8) and incorporating the self-adjoint term [4],

resulting in:

∂L
∂wi

=
−p
J0

(
∑

e
ρ

p−1
e Je

)
+

2α

V∗

(∑
k

ρkvk

V∗
− 1
)

(10)

The two terms are combined within the framework to compute the desired sensitivities.

3.5 Extension to Multi-Material

A key feature of the proposed framework is its versatility. Here, we show how the framework can be easily

extended to multiple materials. In particular, we extend the multi-material framework proposed in [7] by adding

length-scale control.

Recall from Fig. 4 that the NN for a single material had only one output neuron. To extend this to multiple

materials, we simply insert additional outputs as illustrated in Fig. 7, corresponding to void ρ(φ), and any of S

candidate materials, with corresponding mass densities ρ1, . . . ρS. The Softmax activation of the output layer ensures
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that 0 < ρ(i) < 1. Further, the Softmax construction also ensures that the partition of unity is satisfied, i.e., ρ(φ) +

ρ1 + . . . ρS = 1; please see [7] for a proof. The critical point is that one can use the same NN as was used for single

material, i.e., the number of design variables remains almost unchanged, except for a few additional variables in

the last layer. This is later substantiated through numerical experiments. Finally, since the computation is end-to-

end differentiable, one can avoid manual sensitivity derivation. Note that, for multi-material design, a net mass

constraint must be imposed instead of a volume constraint; see [7].
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Fig. 7: Length scale-control for multi-material TO.

4 Algorithm

The optimization procedure is summarized in Algorithm 1. We will assume that the NN has been constructed

with a desired number of layers, nodes per layer and activation functions. The NN is initialized using a Glorot

initializer [16]. We discretize the domain into a mesh (Ωh) with desired number of elements. Observe that mesh

discretization is essential to capture the physics, but is not directly used to representat the density field. The coordi-

nates of the element centers are used as inputs to the NN during optimization. The density at the center of element

e is denoted by ρe. The loss function is calculated from these discrete values. Here, we use the continuation scheme

where the parameter p is incremented to avoid local minima [35], [40]. The process is then repeated until termina-

tion. The algorithm is set to terminate if the percentage of gray elements (elements with densities between 0.05 and

.95) εg = Ngrey/Ntotal is less than a prescribed value. Here, a termination criteria of 0.0025 is used for εg. Note that

the method may not converge if the termination criteria is too small, say, less than 0.001. This is analogous to the

practical termination criteria of 0.01 used in classic SIMP [2] for the density change.

A key feature of the proposed framework is that one can extract a high resolution topology at no optimization

cost once the process is complete. Specifically, the optimized weights, i.e., w∗ , are used to sample the density field

on a finer grid as illustrated in Fig. 8.
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Fig. 8: Extraction of high resolution topology from the NN.

Algorithm 1 Fourier-TOuNN

1: procedure TOPOPT(NN, Ωh, V∗, lmin, lmax) . NN, discretized domain, desired vol, length scales
2: x = {xe, ye}e∈Ωh or {xe, ye, ze}e∈Ωh ; x ∈ Rne×d . center of elements in FE mesh; optimization input
3: epoch = 0; α = α0; p = p0 . Penalty factor initialization
4: J0 ← FEA(ρ = v∗f , Ωh) . FEA with uniform gray

5: f ∼ U ( h
lmax

, h
lmin

) ; f ∈ Rd×n f . Uniformly sampled frequencies
6: repeat . Optimization
7: x̂ = F (x; f ) ; x̂ ∈ Rne×2n f . Project from Euclidean to Fourier
8: ρ = NN(x̂) . Call NN to compute ρ at p; (Forward propagation)
9: Je ← FEA(ρ, Ωh) . Solve FEA

10: L =
∑
e

ρ
p
e Je

J0
+ α

(
∑
e

ρeve

V∗ − 1
)2

. Loss function

11: Compute ∇L . Sensitivity(Backward Propagation)
12: w← w + ∆w(∇L) . Adam optimizer step
13: α← min(αmax, α + ∆α) . Increment α
14: p← min(pmax, p + ∆p) . Continuation
15: epoch← epoch + 1
16: until εg < ε∗g . Check for convergence

5 Numerical Experiments

In this section, we conduct several numerical experiments to illustrate the proposed algorithm. The implemen-

tation is in Python. The default parameters are listed in Table 1. In this work, we use a continuation scheme for the

SIMP penalty parameter p driving it from p = 1 at the start of optimization upto p = 8. This ensures stability of

convergence [35, 52] as well as driving the final topology to a desired 0/1 state. The minimum number of iterations is

set to 150, and a maximum to 500. After optimization a grid of 15× 15 per element is used to extract a high resolution

topology.

The total number of design variables in the proposed framework can be derived based on the following argu-

ment. Observe that n f cosine and sine components are passed into the projection layer. Each of the terms is fully

connected to the nh neurons in the hidden layer. Further, each neuron in the hidden layer has a bias, and all the

neurons in the hidden layer are mapped to one output neuron (no). Thus the total number of design variables is
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given by, n f ∗ 2 ∗ nh + nh + nh ∗ no. In our instance, this results in a total of 150 ∗ 2 ∗ 20 + 20 + 20 ∗ 1 = 6040 design

variables. The number of design variables is independent of the mesh discretization.

Parameter Description and default value
E, ν Isotropic material constants Young’s Modulus (E = 1) and Poisson’s ratio (ν = 0.3)

n f Number of frequencies in projection space = 150
NN Fully connected feed-forward network with one layer (ReLU) with 20 Neurons.
|w| The number of design variables (weight and bias) is 6040 by default

α Constraint penalty updated every iteration (α0 = ∆α = 0.2)
p SIMP penalty updated every iteration (p0 = 1 ; ∆p = 0.02 ; pmax = 8)
lr Adam Optimizer learning rate 0.01

nelx, nely Number of mesh elements of (60, 30) along x and y respectively
ε∗g Convergence criteria requiring fraction of gray elements be less than ε∗g = 0.0025

Table 1: Default simulation parameters.

All experiments were conducted on an Intel i7 - 6700 CPU @ 2.6 Ghz, equipped with 16 GB of RAM. Through the

experiments, we investigate the following:

1. Benchmark Studies: First we consider several TO benchmark problems, and compare the topologies obtained

through mesh-based SIMP, TOuNN, and proposed Fourier-TOuNN.

2. Comparison Studies: Next, we compare the computed topologies using Fourier-TOuNN against those obtained

using other length scale strategies.

3. Convergence Study: The impact of the Fourier projection on the convergence of a distributed load problem is

investigated.

4. Minimum Length-Scale Control: Here, we vary the minimum length scale (lmin) and study its effect on the topology,

while keeping the maximum length scale (lmax) a constant.

5. Maximum Length-Scale Control: Similarly, we will vary the maximum length scale (lmax) and study its effect on the

topology, while keeping the minimum length scale (lmin) a constant.

6. Single Length-Scale Control: Next, we vary both lmin and lmax, but keeping them equal, and study the impact on

the topology.

7. Number of Frequency Samples: Next, we vary the number of frequency terms n f in the projected frequency space

to understand its effects.

8. Depth of Neural Net: We vary the depth of NN to understand the nature of frequency spreading.

9. Multi-material design: Finally, we present an extension of the proposed work to multi-material designs.

5.1 Benchmark Studies

First we consider four benchmark topology optimization problems illustrated in the first column of Figure 9, to-

gether with the desired volume fraction. The default mesh size is 60× 30. The second column illustrates the topolo-

gies obtained using the popular 88-line implementation of SIMP [2], with a filter radius of 1.4, that directly controls

the minimum length scale, avoiding checker-board patterns [40]; no additional length-scale control was imposed.

The final compliance values and the number of finite element iterations are also listed. The third column illustrates

the topologies obtained using TOuNN [6], using a neural net size of 4 × 20 on the same mesh, without length

scale control. The fourth column are the topologies obtained through the proposed Fourier-TOuNN algorithm, with
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lmin = 6 and lmax = 30. As one can observe, the topologies computed through Fourier-TOuNN exhibit thin features,

and the compliance values are lower (better) than both SIMP and TOuNN. We note that the plots in the third and

fourth column are at a larger resolution. This stems from the fact that, after optimization, the density values are

sampled on a much finer grid (than that used for FE) to extract fine geometry as explained in Fig. 8; this comes

with no additional computational cost. The total computational time for the examples in Figure 9 varied between

4-6 seconds proportional to the number of FE iterations; this is consistent with other mesh-based implementations

such as [2]. Further, averaging across the examples, we observed that, in Fourier-TOuNN, FE accounts for 41%,

forward propagation accounts for 20%, backward propagation accounts for 27%, and the remaining 13% is for mis-

cellaneous operations. This is in contrast to SIMP implementations where FE accounts for a significant portion of the

computation, for instance about 96% as reported in [13]. Reducing the non-FE overhead in Fourier-TOuNN via code

refactoring and just-in-time compilations [23] remains to be explored.
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Fig. 9: Comparison of topologies for various benchmark problems using SIMP [2], TOuNN [6] and proposed
Fourier-TOuNN.

Next, we consider a simple tensile bar problem, (over a mesh of size 60× 30) as illustrated in Figure 10. The

elements on the right edge are explicitly retained, while an extrude constraint along x is imposed as discussed in

[6]. Various length scale intervals are imposed as illustrated; the topologies and compliances obtained are consistent

with expectations.
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LMin = 16, Lmax = 20LMin = 8, Lmax = 10LMin = 2, Lmax = 4

F

Tensile Bar

Fig. 10: Tensile bar for varying length scale.

5.2 Comparison Studies

We consider the length scale results presented in [19] for a mid-cantilever beam with a mesh of 160× 100. With a

target volume fraction of 0.5, the minimum length scale was kept constant at lmin = 1 while lmax was varied. Figure

11 illustrates the computed topologies using the proposed method (top row) and those reported in [19] (bottom

row). In both methods, as lmax is decreased, one can observe more structural members beginning to appear. The

compliance values are not compared here since it was not reported in [19].
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lmax = 2 NA 4 3 2

Fig. 11: Benchmark comparison of designs from [19] and proposed method. The maximum length scale is decreased
(left to right) with lmin = 2 (NA = Not Applicable). The background grid on the top row reflects the FE mesh used.

Next we consider the results presented [56] for an MBB beam with a mesh of 300× 100 elements, and a desired

volume fraction of V∗ = 0.5. The topology obtained without length scale control from [56] is illustrated in Figure 12a.

Figure 12b illustrates the topology obtained through Fourier-TOuNN with a relaxed length scale control of lmin = 2

and lmax = 150. Figure 12 c is the reported topology [56] with a tight and equivalent length control of lmin = 2 and

lmax = 4, while Figure 12d illustrates the Fourier-TOuNN topology with the same length control. We observe that

length scale control increases the compliance as expected and more so, for exact length scale control.

5.3 Convergence

The distributed load problem in Figure 13 (inset) is considered next since it necessary entails thin features [29]

near the loaded edge. This problem is solved using two different methods: TOuNN [6] (with no length scale con-

trol), and with the proposed Fourier-TOuNN method with length scale control (lmax = 30, lmin = 4). The elements

at the top layer are retained explicitly. The difference in compliance convergence between TOuNN and Fourier-

TOuNN is illustrated in Figure 13, while Figure 14 illustrates the progression of the fraction of gray elements
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(a) (b) (c) (d)
Fig. 12: (a) No length scale control [56]. (b) Relaxed length scale control in Fourier-TOuNN with lmin = 3 and

lmax = 100. (c) Tight length scale control [56] with lmin = 5 and lmax = 8. (d) Tight length scale control in
Fourier-TOuNN with lmin = 5 and lmax = 8. The background grid on the top row reflects the FE mesh used.

Fig. 13: Convergence of compliance for distributed load at Vf = 0.45 using TOuNN [6] and Fourier-TOuNN.

(εg = Ngray/Ntotal). We observe that TOuNN is unable to resolve the topology due to the limitations of NN. How-

ever, the proposed Fourier-TOuNN rapidly converges to a topology exhibiting thin features.

The poor convergence of TOuNN is consistent with the analysis in [50] ”for a conventional NN, the eigenvalues of

the Neural Tangent Kernel (NTK) decay rapidly. This results in extremely slow convergence to the high frequency components

of the target function, to the point where standard NNs are effectively unable to learn these components”. On the other hand,

the addition of the Fourier projection leads to rapid convergence.

5.4 Minimum Length-Scale Control

Next, we consider again the mid-cantilever beam in Figure 9, and vary lmin between 3 and 55, while keeping lmax

constant at lmax = 60. The topologies obtained using Fourier-TOuNN for various volume fractions are illustrated

in Figure 15. Observe that for a given volume fraction, i.e. for each row, as lmin is increased, the topology exhibits

thicker features. Further the compliance increases (gets worse) as lmin approaches lmax, i.e., as the solution space

shrinks.

Note that a small volume fraction (first row) contradicts the large value of minimum length scale (column 4).

The minimum length scale is essentially ignored by the algorithm, while the volume constraint is respected. Such

contradictions can be hard to resolve in exact length scale control.
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Fig. 14: Progression of relative amount of gray elements for distributed load at Vf = 0.45 using TOuNN [6] and
Fourier-TOuNN.
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lmax = 32

Fig. 15: Varying minimum length scale with lmax = 60.
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5.5 Maximum Length-Scale Control

Next, we vary lmax between 4 and 30, while keeping lmin constant at lmin = 4. The topologies obtained using

Fourier-TOuNN for the mid-cantilever beam are illustrated in Figure 16 for various volume fractions. Similar to

the previous experiment, for a given volume fraction, i.e., for each row, as lmax is increased, the topologies exhibit

thicker features. Further, the compliance decreases (improves) as lmax moves away from lmin, i.e., as the solution

space expands.

Once again, note that the large volume fraction imposed (last row) contradicts the small value of maximum

length scale; in the current scenario, this results in disconnected topologies.
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lmin = 2

Fig. 16: Varying maximum length scale with lmin = 4.

5.6 Single Length-Scale Control

In the previous experiment, one can observe that, in the first column of Figure 16, when lmin = lmax = 4, the

topologies exhibit a repeated pattern. Indeed, one can obtain repeated patterns of various length scales by setting

lmin = lmax = l. This is illustrated in Figure 17. Such patterns are often used as fillers in additive manufacturing

[15, 26], and have been obtained by other researchers using various constraint techniques [53], [54], [55]. Consistent

with the observations of Section 5.4 and 5.5, the imposed length scales can limit the design space, leading to sub-

optimal designs.
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l = 3; J = 90.69 l = 4; J = 92.49 l = 7; J = 99.79 l = 10; J = 96.36

Fig. 17: Repeated patterns for a mid-cantilever beam (Vf = 0.45) when lmin = lmax.

5.7 Number of Frequency Samples

Thus far we have used a default of 150 frequency terms (n f ) within the range defined by lmin and lmax. In this

experiment, we will vary n f and study its effect on the topology. In particular, we consider the L-bracket problem

illustrated in Figure 18. The length scales were kept constant at lmin = 4 and lmax = 30, and the desired volume

fraction is 0.4.

1
0
0

40

100

40

10

Fig. 18: L-Bracket with load.

The topologies obtained by varying n f are illustrated in Figure 19. Based on all the experiments reported in this

paper, we observed that about 100 frequency terms are sufficient for convergence. Using very few frequency terms

can lead to poor convergence. This is consistent with the observation made in [52] ” ... if too few Fourier [coefficients]

are used, the resulting design is not acceptable.”
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Fig. 19: Effect of number of frequency terms n f on the topology.

5.8 Depth of Neural Net

In all the experiments thus far, we have used, and recommend, a NN with just one layer. Here, we briefly consider

the effect of the number of layers nL on the topologies for the mid-cantilever beam with lmin = 2 lmax = 20 and

V∗f = 0.5. From Figure 20, we observe that as we increase the depth of the NN, the topologies exhibit wiggles [52].

This observation is consistent with analysis in [50], where it was shown that additional layers can lead to frequency

spreading. Thus, to limit this spread, we recommend that nL = 1, or nL = 2 in the proposed framework.
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Fig. 20: Effect of the NN’s depth on the topology; the number of design variables are 6040, 6460, and 7720
respectively.

5.9 Multi-material design

In this section, we demonstrate multi-material design with length scale control. Note that a mass fraction con-

straint must be imposed, instead of volume fraction. Therefore the physical density of all materials ([kg m−3] in SI)

is required. For the experiments, the candidate materials are listed in Table 2, where λ denotes the physical density.

Observe that. for a given density distribution ρ(i)(x, y), the total mass is given by:

m =
S

∑
i=0

∫
Ω

λ(i)ρ(i)(x, y)dΩ
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Index Color E λ
φ Gray 1e-9 1e-9
1 Black 1 1
2 Red 0.8 0.7
3 Blue 0.2 0.15

Table 2: Candidate materials

For numerical demonstration, we consider again the Michell structure in Fig. 9, and impose a desired mass

fraction of 0.3, where a mass fraction of 1 means filling the entire domain with the heaviest material. The mesh size

is 60× 30 and n f = 150.

The first experiment involves only material φ, 1, 2 from Table 2. Figure 22 compares the computed topologies

obtained using the original method (without length scale control) [7], and using the proposed framework, with lmin

= 3 and lmax = 30. Observe that the compliance decreases with length-scale control. Compared to the single material

design in Figure 9, the number of design variables increases marginally from 6040 to 6083.
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Fig. 21: Two multi-material designs (a) without length scale control [7] (b) with, length scale control.

Next, we repeat the experiment using all three materials φ, 1, 2, 3 from Table 2. The topologies are illustrated in

Fig. 21. Observe that the volume fraction is fairly high since the light material occupies a significant portion of the

design space, but the mass fraction remains at 0.3. The number of design variables increases marginally to 6104.

(b)
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Fig. 22: Three multi-material designs (a) without length scale control [7] (b) with, length scale control.

6 Conclusion

In this paper, we presented a simple length scale control strategy by extending the recently proposed TOuNN

method [6]. The extension relied on a Fourier projection; no additional constraints were required. Further, since the
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computations and sensitivity analysis are performed via computational graphs and back-propagation, it is easier

to compound other manufacturing constraints [51] into the framework. The optimization was performed using an

Adam optimizer. Other schemes such as L-BFGS [38] may lead to faster convergence and needs further experimenta-

tion. Further, the FE solver was outside the automatic differentiation framework. Integrating a solver for end-to-end

differentiation [5] will be addressed in the future. Several numerical experiments were presented to characterize the

proposed method. The extension to multi-material design was also presented.

The proposed framework has several deficiencies. It only offers an approximate control over the length scales.

While this may suffice certain applications, exact length scale control remains to be addressed. As observed earlier,

the cost of weight updates also contributes significantly to the net computational cost. Its mitigation needs to be

explored. In theory, the method can be extended to 3D, but needs to be demonstrated.

7 Replication of results

The Python code pertinent to this paper is available at www.github.com/UW-ERSL/Fourier-TOuNN.
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