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1.1 Introduction
This chapter focuses on generating optimized topologies using multiple materials. The interest in
multi-material topology optimization (MMTO) stems from the well-recognized synergy between
topology optimization (TO) and additive manufacturing (AM), where organic structures created
through TO can be directly fabricated by a variety of AM processes. Given the rapidly increas-
ing capabilities of AM, there is an opportunity to improve the performance of consumer products,
biomedical, and aerospace components, through simultaneous optimization of topology and distri-
bution of multiple materials.
Researchers have proposed various MMTO strategies [24, 11] to address this need (please see lit-
erature review in Section 2). However, these strategies are computationally intensive, and not well-
suited for complex 3D design problems. An additional limitation is that they require the desired
volume fraction for each material to be specified. This imposes an unnecessary burden on the de-
signer. In the present chapter, we address both deficiencies by proposing a MMTO framework that
is not only efficient, but it also eliminates the need to specify a priori, the desired material com-
position. The proposed framework is based on tracing Pareto frontiers, and is a generalization of
the single-material Pareto method proposed in [16]. Through this generalization, a series of multi-
material optimized solutions are generated. Furthermore, we show that the method can be easily
ported to the cloud, providing easy access to designers from around the world. Figure 1.1 illustrates
the proposed cloud based MMTO and AM framework.
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4 Efficient Multi-Material Topology Optimization

FIGURE 1.1: Overview of the proposed MMTO framework.

1.2 Literature Review
In multi-material topology optimization (MMTO), one must simultaneously optimize the topology,
and the distribution of various materials within the topology. A typical MMTO compliance mini-
mization problem can be posed as:

minimize
Ωk=1,...,M⊂D

J(Ω,u) = fT u

Ωi∩Ωi6= j = /0 i, j = 1, ..,M
gn(Ω,u)≤ 0 n = 1, ...,N
subject to
Ku = f

(1.1)

where J is compliance, M is the number of materials, and Ωk is the topology for kth material to be
computed. Thus, the objective is to find the optimal distribution of M non-overlapping materials,
within a given design space, that minimizes a specific objective and satisfies certain design con-
straints. The MMTO problem posed in Equation 1.1 assumes that every point within the design
space has a distinct material associated with it (or is void). This differs from functionally graded
material optimization, where a mixture of base materials is allowed.

Below, we briefly review various strategies that have been proposed to solve such MMTO problems.

1.2.1 SIMP-Based MMTO

The classic Solid Isotropic Material with Penalization (SIMP) strategy for topology optimization,
was first extended to multiple materials in 1992 [19]. A unique and challenging aspect of SIMP
is that one must carefully assign interpolation schemes for different material properties. These are
discussed in [14], where Sigmund proposed a two-material interpolation scheme for designing ther-
mally, and electrothermally driven micro-actuators. An alternate material interpolation strategy was
developed in [25] by introducing a peak function and exploiting optimality criteria method.

A new SIMP method was presented in [7] for optimizing multiple homogeneous materials, which
interpolates the stiffness matrix instead of interpolating the Youngs modulus. The validity of this
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method was demonstrated through 2D examples involving two materials. In [3], Chavez and Cunha
implemented SIMP to solve a specific problem of minimizing the compliance of concrete slabs
reinforced with carbon fibers. Their approach relies on concrete failure criteria, and the fact that the
slabs are simple symmetric geometries in 2D. In 2007, De Kruijf et al. employed SIMP to minimize
both compliance and resistance to heat dissipation of composites; the method was limited to 2D,
and attains only the upper limits of HashinShtrikman [4]. If the materials are composites, it is well-
known that SIMP interpolations can violate Hashin Shtrikman bounds [15]. Blasques and Stolpe
proposed a density based framework for minimizing compliance of laminated composite beam cross
sections [2]. The method allows multimaterial laminates in 2D, where the formulation is carried out
by writing equilibrium between laminate layers, under the limiting assumptions that the beam is
slender and has invariant cross sections. A new multi-resolution scheme for MMTO was developed
in [11], where different levels of discretization were employed for representing displacement, design
variables, and density. The method uses the alternating active phase algorithm, in which the original
problem is decomposed into a number of sub-problems, where only two of the materials are active,
and is solved using the density approach.

1.2.2 Level-Set MMTO

In 2003, Wang and Wang extended the level-set based topology optimization to address multiple
materials [22]. The method requires M level sets to represent 2M distinct materials, and the pro-
posed strategy was used to solve benchmark problems in 2D, where different colored level sets
represented distinct materials. Later, the idea was expanded toward compliant mechanism design
[21] and microstructures [23]. Unfortunately, as demonstrated in [1], the underlying shape deriva-
tives were approximations, and relied on certain assumptions. Allaire and coworkers developed the
correct mathematical shape derivatives in [1], where the interface zone thickness is also kept con-
stant. In order to remove discontinuity caused by sharp interfaces, Vermaak et al. [20] suggested
using multiple intermediate interfaces to attain continuity. The challenges in level-set based MMTO
are: (1) field discontinuity, and (2) thickness diffusion. The former is due to the discontinuity in
phase properties, which leads to discontinuous normal strain and tangential stress. The latter is
caused by numerical diffusion in the level-set process [1].

1.2.3 Element Sensitivity Methods for MMTO

In 2010, Ramani developed an algorithm, based on the concept of pseudo element sensitivity, for
compliance minimization of MMTO problems [12]. The algorithm starts with computing and rank-
ing element sensitivities, where for each element, two sensitivities are computed: the first sensitivity
is the expected change in objective when the element material is changed to the next heavier ma-
terial, and the second sensitivity is the expected change in objective when the element material
is changed to the next lighter material. Then, the material distribution undergoes a repeated cycle
between feasible and infeasible solutions, until it converges. Ramani extended this in 2011 to stress-
constrained MMTO [13].

The work presented in this chapter uses the concept of element sensitivity; however:

1. The connection between element sensitivity and well-known topological sensitivity is illus-
trated. Thus, the concept of element sensitivity can be generalized to arbitrary quantities of
interest.

2. In [13], the intermediate designs may be structurally disconnected. Therefore, as the author
states, it is critical that void elements be assigned a low value of Youngs modulus. In the
present work, since every intermediate is Pareto-optimal, it is necessarily connected, and
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therefore, void elements can be suppressed without resulting in singularity. This leads to
better condition number and faster convergence.

3. Displacement constraints are handled in [12] by switching between “infeasible” and “fea-
sible” designs. Here, all intermediate designs satisfy the displacement constraint, and the
designer has the option of choosing from a multitude of Pareto-optimal designs.

4. The material changes in [13] are restricted by the two sensitivites described above, this may
lead to suboptimal designs. Here, this limitation is eliminated, and is illustrated later through
numerical experiments.

1.2.4 Nomenclature

For clarity and reference, we summarize below the symbols used in this chapter.

Ω Overall topology
Ωi Topology for ith material
D Design domain
|Ω| Volume of overall topology
|Ωi| Volume of topology for ith material
V ? Allowed total volume
V ?

i Allowed total volume for material i
ρi Density of material i
M̄ Allowed total mass
J Compliance
K Stiffness matrix
u Displacement vector
f External force vector
g Generic constraint
σ Stress tensor
ε Strain tensor
ν Poisson’s ratio
TJ(p) Topological sensitivity of compliance at point p
λ Lame’s first parameter
µ Lame’s second parameter
φ Quantity of interest
Dφ (e) Discrete sensitivity of quantity of interest at finite element e
DJ(e) Discrete sensitivity of compliance at finite element e
Ke Stiffness matrix of element e
ue Displacement vector of element e
∆Jk→m

e First order element sensitivity for compliance of swapping material k with m at element e
∆Jk→ /0

e First order element sensitivity for compliance of removing element e with material k
∆J /0→k

e First order element sensitivity for compliance of adding element e with material k
∆M /0→k

e Change of mass for swapping material k with m at element e
θ k→m

e Ratio of element sensitivity over change in mass for swapping material k with m at element e
r1(e) Ranking parameter at element e for reducing mass sub-step
r2(e) Ranking parameter at element e for reducing compliance sub-step
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1.3 Proposed Method
Since the proposed method generalizes the topological sensitivity based single-material Pareto-
tracing method [16, 9] to multiple materials, we briefly summarize the concept of topological sen-
sitivity, its relationship to element sensitivity, and the single-material Pareto method.

1.3.1 Topological vs. Element Sensitivity

Topological sensitivity is defined as the first order change in a quantity of interest, when an in-
finitesimal hole is inserted in a domain. A closed-form expression for the topological sensitivity for
compliance in 2D homogeneous isotropic materials is given by [5]:

TJ(p)≡ 4
1+ν

σσσ : εεε− 1−3ν

1−ν
tr(σσσ)tr(εεε) (1.2)

This has also been generalized to 3D [10]:

TJ(p)≡−20µσσσ : εεε− (3λ −2µ)tr(σσσ)tr(εεε) (1.3)

where λ and µ are the Lame’ parameters. Similar topological sensitivity fields can be computed for
various performance metrics, both in 2D and 3D [16].

Observe that the topological sensitivity can be computed as a post-processing step after a finite
element analysis is carried out. An intuitive interpretation of topological sensitivity is that regions of
low sensitivity correspond to regions with relatively low impact on performance, and can therefore
be targeted for removal. For other quantities of interest such as anisotropic strength, and for multi-
material scenarios, no closed-form expressions for topological sensitivity exist. We will therefore
consider an alternate discrete element sensitivity, defined, for each element, as the change in any
quantity of interest when a single element e is deleted from the mesh:

Dϕ(e)≡
ϕ(Ω− e)−ϕ(Ω)

|e| (1.4)

where |e| is volume of a single finite element, and is assumed to be negligible with respect to the
volume of topology (|e| � |Ω|). It is easy to show that the element sensitivity for compliance is
given by [8]:

DJ = uT
e Keue (1.5)

As the element size shrinks to zero, one can expect the element sensitivity to approach the topo-
logical sensitivity. Indeed, Figure 1.2 compares topological sensitivity and element sensitivity for
compliance for the 2D L-bracket. Observe that the two fields are quite similar since they essentially
capture the first order change in compliance when material is removed. However, element sensitiv-
ity is easy to compute for arbitrary quantities of interest.
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FIGURE 1.2: (a) L-bracket geometry, (b) topological sensitivity and (c) discrete element sensitivity.

1.3.2 Volume vs. Mass Formulations

A common method for solving the MMTO problem in Equation 1.1 is to impose a desired volume
constraint on each of the constituent material [23]:

minimize
Ωk=1,...,M⊂D

J(Ω,u) = fT u

|Ω| ≤V ∗

|Ωk| ≤V ∗k
Ωi∩Ωi6= j = /0 i, j = 1, ..,M
gn(Ω,u)≤ 0 n = 1, ...,N
subject to
Ku = f

(1.6)

where J is compliance, |Ω| is the total volume, |Ωk| is volume of kth material. Unfortunately, these
constraints reduce the design space, and also impose an additional burden on the designer since the
designer must guess, a priori, the upper limit for the constituent materials.

Consider now an alternate total-mass-constrained formulation:

minimize
Ωk=1,...,M⊂D

J(Ω,u) = fT u

∑
k=1,...,M

ρkVk ≤ M̄

Ωi∩Ωi 6= j = /0 i, j = 1, ..,M
gn(Ω,u)≤ 0 n = 1, ...,N
subject to
Ku = f

(1.7)

Observe that the constraint is on the total mass of the design. In other words, no additional constraint
is imposed on the relative volume fraction of each material. In the absence of such constraints, we
are more likely to converge to better-performing designs; this was confirmed in [6].

Taking this one step further, the constraint on the total-mass can also be eliminated by considering
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a two-objective generalization of Equation 1.7:

minimize
Ωk=1,...,M⊂D

{J,M }

∑
k=1,...,M

ρkVk = M

Ωi∩Ωi6= j = /0 i, j = 1, ..,M
subject to
Ku = f

(1.8)

This would allow us generate multiple Pareto-optimal solutions, rather than a single solution at the
desired total-mass.

1.3.3 Single material Pareto Method

With this background, consider the Pareto method proposed in [16] for solving the single-material
bi-objective TO problem:

minimize
Ω⊂D

{J,V }

subject to
Ku = f

(1.9)

To solve the above problem, in the Pareto-method, one starts with the full design-space, i.e., design
of volume fraction 1.0. Then, the target volume fraction is decremented by a small amount (with an
initial decrement of 0.05, that is dynamically updated). The Pareto-optimal design, for that volume
fraction, is computed using topological sensitivity, and a fixed-point iteration, as described in[16].
Typically, three to four FEA operations are needed for generating a Pareto-optimal design. Once
this is complete, the target volume fraction is decremented gradually, resulting in a series of Pareto-
optimal designs as illustrated in Figure 1.3. The optimization stops when a constraint is violated,
and additional Pareto-optimal designs cannot be generated.

FIGURE 1.3: Single-material Pareto tracing.
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Pareto differs from classic SIMP based methods in three ways: (1) in Pareto-method, a constraint
on the final desired volume fraction is not needed since all Pareto-optimal designs that satisfy other
performance constraints are generated, (2) Pareto-method relies on topological sensitivity rather
than on pseudo-densities, and (3) since the intermediate designs are Pareto-optimal, the stiffness
matrices are inherently better conditioned, leading to faster convergence of iterative solvers.

1.3.4 Multi-material Pareto Method

In the same spirit, the multi-material Pareto method, proposed here, generates a series of Pareto-
optimal multi-material designs that satisfy the imposed constraints. The proposed algorithm starts
with the heaviest design. Then, instead of decreasing the volume fraction, the mass fraction is de-
creased gradually, and Pareto-optimal multi-material designs are generated at each step. Further,
instead of relying on topological sensitivity, we rely on discrete (element) sensitivity since closed-
form expressions for multi-material topological sensitivity do not exist.

To ensure that that the Pareto curve is traced, each step consists of two sub-steps: (1) the total mass
is reduced by a small decrement (sub-algorithm 1), followed by (2) a reduction in compliance (sub-
algorithm 2). These two sub-steps are repeated until the next Pareto-optimal design is reached; see
Figure 1.4. Then, the entire process is repeated to generate the entire Pareto curve, and associated
multi-material designs.

FIGURE 1.4: Tracing Pareto curve, and the two sub-steps.

Both sub-steps rely on a common theme of ’swapping’ materials associated with elements. Observe
that, at any instance, each element is associated with some material k (the material can also be void).
Now consider a hypothetical swapping of the material k with material m. Observe that the change
in compliance is given by the first-order element sensitivity (see Equation 1.5):

∆Jk→m
e = uT

e Kk
eue−uT

e Km
e ue (1.10)

As a special case, if the element is deleted, i.e., replaced with void, we have an increase in compli-
ance given by:

∆Jk→ /0
e = uT

e Kk
eue (1.11)
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Similarly, as a special case of Equation 1.10, if a new element is inserted (in place of a void), we
have a decrease in compliance by:

∆J /0→m
e =−uT

e Km
e ue (1.12)

The element sensitivity in Equation 1.10 can be generalized to other quantities of interest. Specifi-
cally, for any quantity of interest Q, the first-order sensitivity is given by:

∆Jk→m
e =−λλλ T

e Kk
eue +λλλ T

e Km
e ue (1.13)

where λλλ is the adjoint field associated with the quantity of interest. Thus, there is no fundamental
restriction of the proposed method to compliance problems. The specific expression for the adjoint
depends on the quantity of interest; for example, for the p-norm stress, an expression for the adjoint
is derived in [18].

Similarly, the change in mass is given by:

∆Mk→m
e = ρmVe−ρkVe (1.14)

where ρ denotes (real) material density and Ve denotes volume of an element. Given this back-
ground, we now consider the two sub-steps to generate Pareto-optimal multi-material designs.

Reducing Mass

Consider the mass-compliance plot of Figure 1.5. In this sub-step, our objective is to reduce mass,
i.e., we swap materials only if ∆Mk→m

e < 0. Thus, only quadrants 2 and 3 in Figure 1.5 are accept-
able. Further, quadrant 3 is preferable, since both mass and compliance are reduced.

FIGURE 1.5: Reducing mass.

Thus, for each element, we must find a suitable material m such that the angle θ is maximized, or
equivalently,

minimize
m

−θ k→m
e ≡ −∆Jk→m

e

∆Mk→m
e

subject to
∆Mk→m

e < 0

(1.15)
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Thus, in the first sub-step, for each element, we must find the material m that gives the lowest
value of −θ k→m

e . As a first step, we perform a finite element analysis and compute the compliance
sensitivity for each element, as given by Equation 1.5. Next, for each element we compute the
sub-step 1 ranking parameter:

r1(e) = min
m

{
−∆Jk→m

e

∆Mk→m
e

|∆Mk→m
e < 0

}
(1.16)

The array r1 is sorted in an increasing order. After sorting, the first element in this list will be the
best candidate to consider for material swapping, and so on. The number of elements to swap in
this sub-step is chosen so as to result in a desired reduction in mass of ∆M. Thus, we traverse down
the sorted list of elements, and execute the swapping, until the desired reduction in mass is reached.

Reducing Compliance

In this sub-step, our objective is to reduce compliance, i.e., we swap the material associated with an
element, only if ∆Jk→m

e < 0. Thus, only quadrants 3 and 4 in Figure 1.6 are acceptable. Further, the

compliance is minimized if the angle is close to
3π

2
.

FIGURE 1.6: Reducing compliance.

Thus, for each element, we solve the following minimization problem (a linear search among all
materials):

minimize
m

|θ k→m
e − 3π

2
| ≡ sign(∆Mk→m

e )
∆Jk→m

e

∆Mk→m
e

subject to
∆Jk→m

e < 0

(1.17)

As in the previous sub-step, we perform a finite element analysis, and compute the compliance
sensitivity for each element, as given by Equation 1.5. Next, for each element we compute the
sub-step 2 ranking parameter:

r2(e) = min
m

{
sign(∆Mk→m

e )
∆Jk→m

e

∆Mk→m
e
|∆Jk→m

e < 0
}

(1.18)

The array r2 is sorted in an increasing order. The first element in the sorted list will the best candi-
date to consider for material swapping, and so on. The number of elements to swap in this sub-step
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should result in a desired reduction in mass of ∆M. Therefore, we traverse down the sorted list of
elements, until the desired reduction is reached.

Sub-steps 1 and 2 are repeated (see Figure 1.4) until there is no further improvement in compliance.
We have observed in our numerical experiments that, typically, three-to-four iterations of the two
sub-steps are sufficient to converge to the local Pareto-optimal design.

1.4 Numerical Experiments
In this section, we demonstrate the validity of the proposed method through several 3D examples.
The material properties used in these experiments are summarized in Table 1.1; E, ν , and ρ denote
Young’s modulus, Poisson ratio, and density, respectively. In all examples, a uniform voxel mesh is
used to discretize the domain.

Table 1.1: Material Properties.

Material E(GPa)E(GPa)E(GPa) ννν ρ(Kg/m3)ρ(Kg/m3)ρ(Kg/m3)

A 105 0.3 5400
B 70 0.3 2700
C 140 0.3 8100

Copper-PLA (40%-60%) 45.2 0.33 4340
Aluminum-PLA (40%-60%) 28.8 0.33 1836

1.4.1 L-Bracket: Single and Two-Material Design

First, we consider the L-bracket illustrated in Figure 1.7a; all dimensions are in meters. The geom-
etry is fixed at the top and a force of 100,000 N is applied at the center as illustrated in Figure 1.7b.
This is a 3D version of a similar 2D problem posed in [6].
Given this structural problem, we consider: (1) a single material A, and (2) two materials A and
B. The geometry is discretized using 50,000 hexahedral elements are used for both experiments.
The objective is to minimize compliance, and to maintain consistency, the mass is reduced by 70%
reduction in both cases. As stated earlier in the algorithm, we start with the heaviest design (all
A) and optimize the topology and material distribution. The final optimized designs for the two
cases are illustrated in Figure 1.8a and Figure 1.8b respectively. Note that the smooth material
plot in Figure 1.8b is an artifact of vertex shading, whereas, in reality, the material assignment is
element-wise discrete.
After the optimization process is complete, we obtain the two Pareto curves illustrated in Figure
1.9. As expected, for a given weight fraction, the two-material design is less compliant (stiffer) than
the corresponding single material design.
Figure 1.10 illustrates the number of pre-conditioned CG iterations for single material TO, and
dual-material TO. As one can observe, the single-material TO took about 200 FEA operations to
complete, while the multi-material TO took about 180 FEA operations to complete. Further, the
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(a) (b)

FIGURE 1.7: L-bracket: (a) dimensions, and (b) structural problem.

(a) (b)

FIGURE 1.8: Optimized L-bracket at 0.30 mass fraction using (a) only material A and (b) both
materials A and B.

CG iterations are moderately higher for multi-material TO. Overall, for this example, the cost of
multi-material design is almost identical to the cost of single-material design.

1.4.2 Cantilever Beam

In this experiment, we consider three materials A, B, and C. The material properties are summarized
in Table 1.1. The geometry and boundary conditions are illustrated in Figure 1.11. The design is
discretized using 50,000 elements, i.e. 159,300 degrees of freedom. Beginning with all C initial
design (heaviest and stiffest), the objective is to reduce mass by 80% while keeping the design as
stiff as possible. Figure 1.11 illustrates the designs produced through optimization process while
tracing the Pareto frontier.
Figure 1.12 illustrates 3 optimized designs with similar mass, but with different choices for the
number of materials. Observe that as more materials are considered, the performance consistently
improves (in the figure, J0 is the initial compliance, that is identical for all three designs)
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FIGURE 1.9: The Pareto curves for single material (A) and two materials (A and B).

FIGURE 1.10: CG iterations for the L-Bracket with (a) single material A, (b) two materials A and
B.

1.4.3 Mount-Bracket

This example focuses on demonstrating robustness and efficiency of the proposed method via a
more complex design. Consider the mount bracket of Figure 1.13a, and its corresponding boundary
conditions. The domain is discretized into 100,000 hexahedral elements with 378,732 degrees of
freedom.
In this example, we consider Copper-PLA and Aluminum-PLA filaments with properties summa-
rized in Table 1.1. The copper filament matrix is both stiffer and heavier. Given these material
choices, starting with the stiffest and heaviest initial design, the objective is to reduce mass by 60%.
Using both materials ( 1.13c) reduces compliance of final design by about 13%, relative to the single
material design ( 1.13b).
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FIGURE 1.11: Optimized cantilever beam at 0.2 mass fraction with materials A, B, and C.

(a)
J
J0

= 3.21 (b)
J
J0

= 2.91 (c)
J
J0

= 2.38

FIGURE 1.12: Optimized cantilever beam at 0.20 mass fraction using (a) only material C, (b)
materials A and C, and (c) materials A, B, and C.

Robustness of Pareto Tracing

To illustrate the robustness of the Pareto-tracing algorithm for the two-material distribution, we
generated a random initial material distribution, of 0.7 mass fraction. Thus, we first need to find
the corresponding Pareto-optimal design af 0.7 mass fraction through the algorithm of Figure 1.4.
As illustrated in Figure 1.14, the algorithm was able to successfully find the Pareto-optimal design,
and is consistent with the design found earlier at the same mass fraction. Further, the Pareto-tracing
algorithm can continue to find other Pareto-optimal designs as illustrated in Figure 1.14.

Run times and Memory Requirements

For all the experiments presented in this section, Table 1.2 summarizes the degrees of freedom, the
target weight (or cost), total run-time, and required memory. All experiments were conducted on an
Intel Core i7 CPU running at 3.4 GHz with 8GB of memory. Observe that all of the optimizations
are completed in a matter of minutes, and use the limited memory (in the order of a tens of Mega-
Bytes).
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(a) (b) (c)

FIGURE 1.13: (a) Mount bracket, geometry and boundary conditions (b) optimized design at mass
fraction of 0.4 using only A and (c) A and B.

FIGURE 1.14: Mount bracket with random initial material distribution.

1.5 Contributions
In this chapter, we have made the following technical contributions:

1. Present a generalized multi-material topology optimization formulation for various cost func-
tionals such as mass or price.

2. Discuss the multi-material sensitivity analysis.

3. Propose an efficient multi-material topology optimization algorithm based on Pareto tracing.
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Table 1.2: Summary of computational costs.

Example #DOF Target weight Time

L-bracket 168,750 30% 10 min.
Beam 159,300 20% 8 min

Mount Bracket 378,732 40% 20 min

4. Demonstrate the effectiveness of this scheme through numerical experiments.

This work can be viewed as an extension of the work presented in [17, 8]. The mesh independency
of the single-material Pareto method is discussed in [18]; its extension to multi-material needs to be
investigated.
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