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ABSTRACT
Lattice structures exhibit unique properties including large surface area, and a highly dis-

tributed load-path. This makes them very effective in engineering applications where weight re-
duction, thermal dissipation and energy absorption are critical. Further, with the advent of additive
manufacturing (AM), lattice structures are now easier to fabricate. However, due to inherent sur-
face complexity, their geometric construction can pose significant challenges.

A classic strategy for constructing lattice structures exploits analytic surface-surface intersec-
tion; this however lacks robustness and scalability. An alternate strategy is voxel mesh based iso-
surface extraction. While this is robust and scalable, the surface quality is mesh-dependent, and
the triangulation will require significant post-decimation. A third strategy relies on explicit geomet-
ric stitching where tessellated open cylinders are stitched together through a series of geometric
operations. This was demonstrated to be efficient and scalable, requiring no post-processing.
However, it was limited to lattice structures with uniform beam radii. Further, existing algorithms
rely on explicit convex-hull construction which is known to be numerically unstable.

In this paper, a combinatorial stitching strategy is proposed where tessellated open cylinders
of arbitrary radii are stitched together using topological operations. The convex hull construction
is handled through a simple and robust projection method, avoiding expensive exact-arithmetic
calculations, and improving the computational efficiency. This is demonstrated through several
examples involving millions of triangles. On a typical 8-core desktop, the proposed algorithm can
construct approximately upto a million cylinders per second.
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1 INTRODUCTION
A lattice structure is defined as a collection of unit cells, where a unit cell can have any topology.

Typical unit cell topologies include face-centered-cubic (FCC), body-centered-cubic (BCC), boxed-
body-centered-cubic (BoxBCC), and so on [12]. For example, Figure 1a illustrates a FCCz-type
lattice structure. Lattice structures exhibit large surface area, and a highly distributed load-path.
This makes them very effective in engineering applications where weight reduction, thermal dissi-
pation and energy absorption are critical [12]. Further, with the advent of additive manufacturing
(AM), lattice structures can now be easily fabricated [3], [29]. For example, Figure 1b illustrates a
lattice structure fabricated via selective laser melting (SLM).

Numerous studies have been conducted to understand the mechanical behavior of lattice
structures, both through theoretical and experimental studies [3], [2], [32]. These studies sum-
marize the influence of lattice topology, lattice parameters and material on the thermal and me-
chanical behavior of lattice structures. However, researchers have repeatedly raised concerns
on efficient construction of lattice structures [30], [29]. Traditional computer-aided-design (CAD)
methods simply do no scale-up to the needs. Specialized methods are needed to fill the gap. The
objective of this paper is to develop a simple, robust and highly efficient method for constructing
lattice structures for down-stream applications.

Fig. 1. (a) A lattice structure model, (b) AM fabricated lattice structure.

Specifically, it will be assumed that a lattice graph with nodes and edges has been defined;
for example, Figure 2a illustrates a simple box-type lattice graph with 45 nodes and 96 edges.
Further, it will be assumed that each edge has been assigned a radius that defines a cylinder
associated with each edge, where the profile of the cylinder will be approximated by an N-sided
polygon. Under some mild assumptions about the graph and radii, the objective is to construct a
water-tight triangulated model of the lattice structure; see Figure 2b.

Further, while lattice structures typically imply a repetitive pattern of a unit cell, the algorithm
developed here apply equally to any graph structure, i.e., a collection of nodes and edges. For
example, Figure 21a illustrates a generic (non-repeated) graph, and Figure 21b illustrates the cor-
responding structure with finite radius, that we wish to construct efficiently. The ability to construct
such generic structures will be particularly advantageous in constructing optimal load-carrying
frames, as demonstrated later.
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Fig. 2. (a) A repeated lattice graph, and (b) corresponding lattice structure.

Fig. 3. (a) A generic graph, and (b) corresponding structure.

The remainder of the paper is organized as follows. In Section 2, popular methods for con-
structing 3D lattice structures are reviewed, and their deficiencies are identified. In Section 3,
assumptions underlying the proposed strategy are summarized, followed by a detailed discussion
on the proposed strategy and algorithm. In Section 4, the algorithm and its implementation are
demonstrated through several numerical experiments. Finally, in Section 5, potential applications
and some of the limitations of the current work are summarized.

2 LITERATURE REVIEW
In this section, the relevant literature is covered by addressing three different strategies that

have been proposed for constructing lattice structures.

1. Surface-surface intersections: Commercial computer-aided-design (CAD) systems such as
SolidEdge, CATIA, NX, and SOLIDWORKS rely on analytic surfaces to model geometry. Thus,
each cylindrical surface can be modeled analytically, and the structure can be constructed
through Boolean operations that rely on repeated surface-surface intersections. The resulting
model can then be tessellated, depending on the degree of approximation desired. Simple
structures such as the one in Figure 2b can be easily constructed using such CAD systems.
However, this strategy does not scale beyond a few hundred lattices due to large memory re-
quirements, and time complexity [5], [30]. An alternate hybrid strategy was proposed in [30]
where, instead of analytic surfaces, tesselated cylinders are directly used for Boolean oper-
ations. It was demonstrated that lattice structures with about 5000 beams can be handled
with ease. Unfortunately, Boolean operations over tesselations are fragile, require exact arith-
metic [22], and are computationally demanding [4].
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2. Isosurface extraction: In the isosurface extraction method, a distance function that captures
the lattice structure implicitly is defined over an underlying voxel mesh. Then, the marching
cubes (MC) algorithm is used to extract the zero-value iso-surface [1], [19]. While this method
is both robust and scalable, the surface quality depends on the voxel size. Further, a large
number of triangles is usually constructed, requiring significant post-decimation. Alternately,
the morphological dilations [16] strategy has been proposed, where a virtual sphere is rolled
over each edge of the lattice graph, embedded within a voxel mesh. Although, this approach is
simple and reliable, its accuracy once again depends on the resolution of the underlying voxel
mesh, and a large number of triangles is typically generated. Further, this method does not
exploit the cylindricity of the beams.

3. Stitching methods: The third strategy uses open tessellated cylinders as a starting point.
Here, two approaches have been proposed [7], [25]; the two differ in the way they handle cylin-
der intersections. In the former, intersection points are explicitly computed, and then stitched
together using geometric operations, assuming that the radii of intersecting cylinders are iden-
tical. In the latter, convex hulls at the intersections are constructed, and these convex hulls
are then stitched with the open cylinders. However, as is well known, convex hull construction
is numerically unstable, and typically require exact arithmetic [8]. In addition, the latter does
not consider reducing the volume of the convex hull; this is often desirable in AM. In an effort
similar to [25], Exoskeleton [26] is a Rhino plug-in for lattice structure construction.

Finally, several commercial implementations are now available for constructing lattice struc-
tures; these include Element [18], Meshify [15], Frustrum [9], and NetFabb [17]. Element [18] uses
isosurface extraction and stitching methods to construct lattice structures from CAD or mesh ge-
ometries. It also allows for creating non-uniform lattice structures based on user defined functions.
Meshify [15] has a focus on manufacturability of final designs; it is a cloud-based program that al-
lows users to perform slicing operations on the constructed lattice structures, a necessary step for
additive manufacturing. Frustrum [9] uses its geometry kernel to create and blend lattice struc-
tures with traditional CAD geometries with a focus on manufacturability and topology optimization.
Finally, NetFabb [17] uses lattice generation and optimization as a lightweighting tool for additive
manufacturing.

3 PROPOSED STRATEGY
This section covers the proposed algorithm, starting with a discussion on assumptions and

terminology.

3.1 Assumptions and Terminology
As stated earlier, a fundamental assumption is that a lattice graph has been defined, where the

graph consists of nodes and edges, and a radius value which has been assigned to each edge.
Formally, a lattice graph is defined as G = G(V,E,R, P ) where:

V is the set of nodes and their 3D coordinates; it is assumed that no two nodes are coincident.
E is the edge connectivity, where each edge is connected to two unique nodes in the graph.
There are no restrictions on the number of edges attached to a node. It is assumed that no
two edges intersect, except at the nodes.
R is the user-specified radius for each edge; the radius must be strictly less than half the edge
length. The authors of [26] have constructed lattices by specifying nodal radii since this often
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leads to smoother nodal geometry. However, the choice in this paper is driven by engineering
applications where edge radii (rather than nodal radii) are specified through optimization.
P is the number of segments (≥ 3) by which the circumference of the cylinder associated with
each edge is divided. For example, with P = 4, the circumference will be approximated by a
square, and so on. It will be assumed that P is common for all edges (this is a limitation of the
current implementation, not the underlying algorithm).

Under these mild assumptions, a deterministic and simple algorithm is proposed to construct
a triangulated model of the lattice structure with the following characteristics:

1. The model is watertight, i.e. there will be no gaps, or cracks in the mesh.
2. The model is topologically valid i.e., none of the triangles is inverted, or geometrically overlap

with other triangles.
3. The model is consistently oriented and 2-manifold.
4. The number of lattice triangles can be estimated prior to constructing the lattice structure.

3.2 Constructing Lattice Graphs
As stated earlier, a starting point for the proposed algorithm is a lattice graph. For complete-

ness, two methods are proposed for constructing lattice graphs from a 3D geometry, using the
example in Figure 4.

Fig. 4. A J-shaped model.

The first involves creating a voxel mesh for a given geometry, and creating a lattice graph
inside each voxel; see Figure 5. A drawback with a uniform voxel mesh is that the mesh will
not necessarily conform to the parent geometry. Deforming the voxel mesh to conform to the
geometry can alleviate this problem [21] but can also create highly distorted lattices; also see [1]
for an alternate strategy for creating conforming lattices from a voxel mesh.

Instead of using a voxel mesh, the edges and vertices of a tetrahedral mesh can also be used
for creating graphs; see Figure 6. While it is easier to create a conforming graph via a tetrahedral
mesh, the graph will exhibit a much more complex topology, i.e., on the average, more edges will
be connected to a node. Note that the resulting structure no longer fits the standard definition of a
lattice structure that typically consists of repeated unit cells.

3.3 Algorithm
Once a lattice graph has been defined, a key concept in constructing the lattice structure is

that of profiles associated with each lattice edge (Figure 7). A profile is the cross-section of the
cylinder, and is offset from the two ends points by a specific distance computed below. At any
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Fig. 5. Creating a lattice graph from a voxel mesh.

Fig. 6. Creating a lattice graph from a tetrahedral mesh.

given node, the profiles of all cylinders associated with a given node are stitched together, and
the resulting nodal-volume is shrunk to a minimum. These steps are illustrated in Figure 8, and
described below.

Fig. 7. Computing the profile offset.

1. Pair-Wise Minimum Profile Offset: Let Ei and Ej be two edges coincident at a node, with
a subtended angle of θij (see Figure 9). Let the radii associated with the two edges be ri
and rj respectively. The minimum profile offset dij for the cylinder on edge Ei with respect
to the cylinder on Ej , to avoid intersection is given by (see proof in Figure 9) dij = (rj +
ricos(θij))/sin(θij).

2. Computing Node Radius: At each node, the node radius is defined as the maximum profile
offsets for all pairs of edges Ei and Ej (associated with that node), computed in step-1. At this
value, none of the cylinders will locally intersect. Using this radius, profiles are constructed for
each cylinder. The profile is governed by the number of user-defined segments P . To construct
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(1) Compute profile offsets. (2) Compute node radius. (3) Build convex hull. (4) Reduce node volume.

Fig. 8. Four simple steps for constructing lattice structures.

Fig. 9. Minimum profile offset to avoid interference with neighboring cylinders.

the profile, P vertices are first generated on a unit circle lying on an XY plane, and then mapped
using standard quaternions. Further, to ensure that there is no twisting of vertices located at
profile0 and profile1 (see Figure 7), the same quaternion is used for both profiles. An open
cylinder is then constructed by connecting the two profiles as in Figure 10a. If there are P
segments on a profile then the number of triangles on the open cylinder is 2P . If the edge has
no adjacent neighbor, then it is closed at that end as in Figure 10b; P − 2 triangles are needed
to close the end.

Fig. 10. (a) Triangulating the cylindrical surface, and (b) optionally the closed end of a cylinder.

3. Constructing Convex Hulls: Observe that since all profile vertices, associated with a given
node, are at the same distance, they form a convex hull. The total number of vertices at
a given node is Ne ∗ P where Ne is the number of intersecting edges and P is the number
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of circle divisions. Since this is typically small (100-200), any off-the-shelf 3D convex hull
algorithm [8], [20] can be used. However, some of these algorithms require exact arithmetic
calculations. To avoid this, here, a modified convex hull algorithm is proposed that relies on
standard (and significantly cheaper) IEEE floating point calculations. First, the profile vertices
are projected onto a sphere of radius one; this normalization helps in avoiding overflow and
underflow, and in avoiding edge recovery methods described in [23]. Further, special care is
taken to avoid collinear points by: (1) rotating the quarternion associated with each edge by
a random angle about its axis, and (2) perturbing any remaining collinear points. A typical
convex hull and connecting cylinders are illustrated in Figure 11a, and Figure 11b.

Fig. 11. (

a) Convex hull at a node, and (b) holes to attach cylinders.

4. Volume Reduction: Once the convex hull is computed, the next task is to reduce the volume
of the convex hull. When the angle between edges is uniform, the convex hull at the node
is tight (see Figure 12a), i.e., further reduction in nodal volume is not possible. However,
for varying angles, the size of the convex hull can be quite large (see Figure 12b). This will
increase the total volume of the structure, and can be detrimental to optimized light-weight
lattice structures. Therefore, the last step in this algorithm is to reduce the volume at each
node. Specifically, the profile offset distances are reduced to the ideal distance for each edge
as derived earlier in Figure 9; the process is illustrated in Figure 12c.

Fig. 12. (a) Equal angles lead to small convex hulls, while (b) small angles can create artificially large convex hulls, but (c) the nodal

volume is reduced iteratively.
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The pseudo-code of all algorithms is included in the Appendix.

3.4 Estimates on Model Size
An implicit advantage of the proposed algorithm is that the size of the model (number of tri-

angles and vertices) can be estimated a priori. Specifically, the number of vertices (NV ) is deter-
mined as follows. Since there are two profiles for each edge (on either end) and each profile has
P vertices, the number of vertices in the lattice structure is given by:

NV = 2NEP (1)

where NE is the number of edges in the graph, and P is the number of circle divisions.
An estimate of the number of triangles (NT ) can be computed as follows. Associated with

each cylinder are triangles, where each triangle has one of the profile segments as an edge; this
leads 2P triangles per cylinder, i.e., a total of 2NEP cylinder-triangles. Further, each of the profile
segments also serves as a base for a triangle on the convex hull. This leads to an additional
2NEP convex-hull-triangles. If the lattice graph has any end-nodes (nodes connected to only one
beam), 2 less triangles are needed to close the end, i.e., we subtract 2NV triangles, where NV is
the number of end-nodes, leading to an estimate of

NT = 2NEP︸ ︷︷ ︸
Cylinders

+ 2NEP︸ ︷︷ ︸
Convex Hulls

− 2NV︸ ︷︷ ︸
End Caps

(2)

This is only an estimate since additional triangles, shared by multiple beams, may be included in
the convex hull.

4 NUMERICAL EXPERIMENTS
In this section, the robustness and performance of the algorithm is investigated through several

numerical experiments. Unless otherwise stated, all experiments were conducted on a Windows
i7-5790X@3GHz (8 physical cores), equipped with 32GB memory. Further, since the construction
of the open cylinders and convex hulls can be easily parallelized, OpenMPTM was exploited in the
implementation.

4.1 Algorithm Characteristics
The first set of experiments illustrate the basic characteristics and robustness of the algorithm.

4.1.1 Nodal Connectivity
The robustness of the algorithm in handling nodes with increasing degree of connectivity is

illustrated in Figure 13; each beam is of length 1 mm, the radius is 0.1 mm and P = 16. As one
expect, with increasing degree of connectivity, the node radius also increases.

Table 1 summarizes the expected number of triangles, the actual number of triangles, and the
lattice volume for increasing degree of connectivity.
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Fig. 13. Nodal connectivity with: (a) 4 beams, (b) 8 beams, (c) 16 beams and (d) 18 beams (3D).

NumBeams Expected NumTriangles Actual NumTriangles Volume mm3

4 248 252 0.119

8 496 508 0.224

16 992 1020 0.404

18 1116 1148 0.486

Table 1. Lattice structure data for increasing degree of connectivity.

4.1.2 Profile Approximation
The number of circular divisions for each cylinder is controlled via the parameter P . To illus-

trate, Box lattice structures were constructed inside a cuboid of dimensions 20 mm x 20 mm x 10
mm, with 1.5 mm voxel resolution, and 0.25 mm radius, but with varying values of P ; two such
structures are illustrated in Figure 14.

Fig. 14. Lattice structure with varying profile approximation: (a) P = 3, and (b) P = 24.

Table 2 summarizes the number of triangles, the lattice volume, and computational time for
increasing values of P . Further note in Table 2 that the volume converges only gradually due to the
poor approximation of a circle by an N-sided polygon; this can be easily corrected by appropriately
increasing the size of the polygon for various values of P (but not implemented intentionally). The
table suggests that the computational time grows (approximately) linearly with P . This was further
investigated and confirmed by generating lattices with larger values of P as illustrated in Figure
15.
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P Triangles Volume mm3 Time (secs)

3 62272 598.1 0.010

4 79408 772.8 0.014

6 113686 948.3 0.016

10 182260 1037.3 0.026

18 319397 1071.3 0.055

24 422297 1082.3 0.080

Table 2. Lattice structure data for increasing values of P .

Fig. 15. Computational time as a function of circular divisions.

4.1.3 Non-Uniform Radius
Next, we compare lattices both uniform and non-uniform radii cylinders. A honeycomb lattice

graph with 5120 nodes and 7680 edges was constructed over a sphere of radius 1 m. Figure 16a
illustrates the corresponding lattice structure with uniform cylinder radius of 6 mm, and P = 6;
the structure consists of 194,560 triangles. On the other hand, Figure 16b illustrates the structure
where the radii was randomly distributed between 0.6 mm and 11.4 mm, with P = 6 was cos-
ntructed; the structure consists of 194,565 triangles ( difference can be attributed to convex hull
triangulation). Both models were determined to be water-tight.

4.2 Computational Performance
Consider the Stanford bunny model [6] in Figure 17a that was also used in [7] for lattice struc-

ture constructed. Here, a BCC lattice structure is used as a template with P = 6 (circle divisions),
and R = 0.25mm (cylinder radius). With these parameters, lattice structures were constructed for
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Fig. 16. Lattice structures over a sphere: (a) uniform radii, and (b) non-uniform radii.

various resolutions of the voxel mesh. Figure 17b and Figure 17c illustrate the lattice structures
for 7mm and 3.5mm resolution respectively.

Fig. 17. (a) The Stanford bunny, (b) lattice structure with 7 mm resolution, (c) lattice structure with 3.5 mm resolution.

The performance of the algorithm is summarized in Table 3; the computational times reported
for the proposed method uses 8-core OpenMPTM shared memory implementation (single-core
performance is discussed later); the computational time is computed as the time taken to convert
the graph into lattice structure, and does not include voxel mesh construction, graph construction,
etc. Table 3 also summarizes the results published in [7] and for the commercial code Element [18].
In Table 3, LSLT is the geometric stiching method, CDT is the constrained Delaunary triangulation
(relies on Boolean operations) and MCM is the marching cube method. The computational times
for these algorithms were not reported in [7]. Element offers several options for creating lattice
structures; two of them were selected for comparison: Hex (corresponds to P = 6), and Round
(corresponds to isosurface method). Element was installed and executed by the authors on the
aforementioned Windows machine(same as the proposed algorithm) for direct comparison. As
one can observe, for the 2 mm and 1.75 mm resolution, Element-Hex did not terminate after 5
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mins of computation; the underlying reasons could not be determined. The main observations
are:

The proposed algorithm constructs approximately the same number of triangles per edge as
LSLT [7] and Element-Hex [18]. The differences in the number of graph edges for identical
voxel resolution are likely due to the different voxelization algorithms used.
However, it is significantly faster; the current implementation, on an 8-core machine, can con-
struct approximately four million triangles per second.
The MCM and Element-Round algorithms generate a significantly large number of triangles as
expected.

Voxel Resolution Lattice Graph Edges Lattice Structure Triangles Time (secs)

7 mm (proposed) 3496 93K 0.019

7 mm (LSLT) [7] 3648 94K No data

7 mm (Element-Hex) [18] 3040 81.4K 4.0

7 mm (CDT) [7] 3648 230K No data

7 mm (MCM) [7] 3648 924K No data

7 mm (Element-Round) [18] 3040 6.5M 20.0

3.5 mm (proposed) 29.2K 785K 0.127

3.5 mm (Element-Hex) [18] 23.9K 643K 50.0

2 mm (proposed) 141K 2.66M 0.66

2 mm (Element-Hex) [18] 127.8K Did not terminate No data

1.75 mm (proposed) 208K 3.94M 0.866

1.75 mm (Element-Hex) [18] 190.7K Did not terminate No data

1.00 mm (proposed) 1.08M 29.2M 4.45

Table 3. Model complexity and computational time for the Stanford bunny model.

Next, we study the impact of parallelization using the above Stanford bunny model; Table
4 summarizes the performance of the proposed algorithm for two voxel resolutions, and four
OpenMPTM settings. As one can observe, the algorithm exhibits a high degree of parallelization
that can be easily exploited.

4.3 CAD Model Approximation
In this example, the algorithm’s capability in handling lattice graphs with uniform and non-

uniform nodal connectivity is explored. For illustrative purposes, consider the GE-GrabCAD model
[10] in Figure 18.
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Voxel Resolution 1-core (secs) 2-core (secs) 4-core (secs) 8-core (secs)

2 mm 3.38 1.86 1.13 0.66

1.00 mm 25.45 13.37 8.2 4.45

Table 4. Impact of parallelization on the computational time for the Stanford bunny model.

Fig. 18. The GE-GrabCAD model [10].

Two different lattice graphs were constructed for this model. The first uses a Box-BCC unit
cell within each voxel of 5.5 mm resolution. The second uses a tetrahedral mesh, constructed
via SOLIDWORKS, at 5 mm resolution, where each edge of the tetrahedral mesh serves as a
lattice graph edge. (Slightly different resolutions were used to ensure almost identical number of
graph edges.) In both cases, P = 6 (circle divisions), and R = 0.25mm (cylinder radius). Table
5 summarizes the lattice structure complexity and computational costs. As one can observe, the
average number of edges per node is significantly higher for the tetrahedral mesh, implying a more
complex topology, which in turn, implies larger convex hull volumes.

Graph Nodes Graph Edges Lattice Triangles Time (secs)

5.5 mm Voxel (proposed) 7145 35.4K 964K 0.172

5 mm Tetmesh (proposed) 5853 35.2K 979K 0.185

Table 5. Model complexity and computational time as a function of voxel resolution, for the GEGrabCAD model.

The results are illustrated in Figure 19; as expected, for almost identical complexity, the tetra-
hedral lattice structure better conforms to the geometry.

4.4 Constructing Optimal 3D Truss Structures
An important application of the proposed algorithm is in the construction of 3D optimal frame

and truss structures [14, 24]. Specifically, the algorithm can be deployed to reconstruct 3D struc-
tures once an optimal configuration (topology, geometry and radii) of the structure has been com-
puted.

As an example, consider the initial configuration of a truss structure illustrated in Figure 20a
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Fig. 19. Lattice structure constructed via (a) a voxel mesh, and (b) a tetrahedral mesh.

with the loading and restraints illustrated in Figure 20b (the specific value of the load is not critical
for this illustrative example). We will assume that an initial (uniform) radius has been prescribed
for all edges.

Fig. 20. (a) An initial truss structure (graph), and (b) loads and restraints.

We consider now the optimazation of the truss. Specifically, the location of the free nodes
and the radii of all beams were optimized using the open source algorithm [11], with a constraint
that the total volume of the structure must remain a constant. The resulting optimal truss (graph)
is illustrated in Figure 21a, while Figure 21b illustrates the 3D structure constructed using the
algorithm proposed in this paper.

Fig. 21. (a) An optimal frame (graph), and (b) corresponding 3D structure.

15



ASME Journal of Mechanical Design

Rapid construction of such 3D truss structures can be particularly beneficial during the design
phase.

5 CONCLUSIONS
The main contribution of this paper is an efficient and robust algorithm for constructing lattice

structures of arbitrary topology, and variable radii. Such complex lattice structures can provide
new opportunities for generative design. The numerical experiments demonstrated the generality
and efficacy of the algorithm.

There are several topics that are being considered for future research. For example, the current
algorithm cannot handle gyroids [3] and other non-cylindrical beams [13]; a possible extension
to the proposed algorithm is stitching of generalized shell-like structures. A second limitation is
that there are no provisions currently to retain critical surfaces while creating lattice structures
(several commercial implementations provide this option). As an extension to lattice construction,
3D mesh generation [31] of these structures is an important topic for future research. Finally,
manufacturability constraints, specifically AM constraints such as overhangs and feature size, are
currently being considered. These are particularly important if lattices are used as lightweight
support structures.
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APPENDIX: PSEUDO-CODE
In this Appendix, we provide the pseudo-code of all algorithms underlying the proposed method.

Algorithm-1 is the primary algorithm that generates the 3D lattice structure. Observe that Algo-
rithms 2, 3, 5 and 6 are easily parallelizable in that the computation at a node is independent of
similar computations at any other node. For example, in Algorithm-2, the triangles associated with
the convex hull at each node can be computed independently (and then later merged).

Algorithm 1: Build Lattice Structure
Input: A graph G(E, V ), with radius defined for each edge, and the number of cylinder

segments P
Output: Triangulated mesh M of lattice structure

1 M = empty
2 foreach v ∈ V do
3 M += buildConvexHull(v) /* Algorithm-2 */
4 end
5 M += buildSideTriangles() /* Algorithm-7 */
6 M += buildCapTriangles() /* Algorithm-8 */

Algorithm-2 creates a convex hull at each node, with holes on the surface to attach cylinders;
see Figure 11a and Figure 11b.
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Algorithm 2: buildConvexHull( vp )
Input: A node vp of the graph
Output: Triangulated convex hull with holes where connecting cylinders intersect hull

1 edges = getNumAdjacentEdges(vp)
2 if edges.size() > 1 then
3 computeConvexHullRadius(vp) /* Algorithm-3 */
4 for i← 0 to edges.size() do
5 generateProfiles(edges[i], vp) /* Algorithm-4
6 end
7 computeConvexHull(vp) /* Algorithm-5 */
8 shrinkHull(vp) /* Algorithm-6 */
9 end

Algorithm-3 computes the size of the convex hull (required in Algorithm-2) at a given node.

Algorithm 3: computeConvexHullRadius( vp )
Input: A node vp of the graph
Output: Radius of convext hull at the node vp

1 eneighs = getAdjacentEdges(vp)
2 maxdist = 0.0
3 foreach iedge ∈ eneighs do
4 ri = E[iedge].radius
5 maxdij = 0.0
6 foreach jedge ∈ eneighs do
7 if iedge 6= jedge then
8 t = getAngle(E[iedge], E[jedge])
9 rj = E[jedge].radius

10 if fabs(t) ≤ 0.5π then
11 dij = (ri + rj*cos(t))/sin(t)
12 maxdij = max(maxdij, dij)
13 end
14 end
15 end
16 maxdist = max(maxdist,maxdij)
17 end
18 radius(vp) = maxdist

Algorithm-4 generates the profile of a cylinder (required in Algorithm-2) associated with an
edge at a given node.
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Algorithm 4: generateProfile(e, vp, P )
Input: P , the number of segments, an edge e and one of its node vp
Output: A profile of the cylinder

1 dt = 2π/P
2 for i← 0 to P do
3 nodes[i] = {r*cos(i*dt), r*sin(i*dt), 0.0}
4 end
5 rotateAlong(nodes, dir(e)) /* Align points in the direction of edge*/
6 translate(nodes, vp + dir(e)*radius(vp)) /* Reposition profile */

Algorithm-5 generates the convex hull (required in Algorithm-2) at a given node.

Algorithm 5: computeConvexHull( vp )
Input: A node vp of the graph, and associated edges
Output: Convex hull with holes

1 eneighs = getAdjacentEdges(vp)
2 nodes = empty
3 foreach iedge ∈ eneighs do
4 ep = profileNodes(E[iedge], vp)
5 group[ep] = iedge /*All nodes on a profiles are in same group*/
6 nodes += ep;
7 end
8 scale(nodes) /*Project nodes to a unit sphere*/
9 triangles = convexHull(nodes)

10 foreach tri ∈ triangles do
11 if isSameGroup(tri) then
12 tri.active = 0
13 end
14 end
15 missingNodes = nodes - nodes(triangles)
16 foreach v ∈ missingNodes do
17 tp = closestDistance(triangles)
18 triangles += refineTriangle(tp, v)
19 end
20 scale(triangles, radius(vp)) /*Reposition to desired radius*/

Algorithm-6 shrinks the convex hull to minimize volume, without inverting a triangle.
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Algorithm 6: shrinkHull(vp)
Input: A node of the graph G
Output: Triangle mesh moved towards the node to reduce the hull volume

1 for i← 0 to profiles(vp)) do
2 shiftProfile(profile[i].nodes)
3 if invertedTriangles(vp) then
4 break()
5 end
6 updateCoords(profile[i].nodes)
7 end

Algorithm-7 builds the cylinders connecting to the convex hull.

Algorithm 7: BuildSideTriangles(edge)
Input: A beam E of the graph and P
Output: Triangles on the side of a beam

1 triangles = empty
2 for i← 0 to P do
3 n0 = i; n1 = (i+1)%P
4 n2 = n0 + nSides; n3 = n1 + P
5 triangles += {n0, n2, n1}
6 triangles += {n1, n0, n3}
7 end

Algorithm-8 closes the ends of cylinders for edges that terminate at a node.

Algorithm 8: BuildCapTriangles(edge)
Input: An edge which has no neighbor and P
Output: Triangles closing the profile of the edge

1 triangles = empty
2 for i← 0 to P do
3 triangles += { 0, (k+1)%P , (k+2)%P}
4 end
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