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ABSTRACT

Additive manufacturing (AM) is emerging as a promising technology to fabricate cost-effective, customized functional parts. Designing 
such functional, i.e., load bearing, parts can be challenging and time consuming where the goal is to balance performance and material 
usage.  Topology optimization (TO) is a powerful design method which can complement AM by automating the design process. However, 
for TO to be a useful methodology, the underlying mathematical model must be carefully constructed. Specifically, it is well established 
that parts fabricated through some AM technologies, such as fused deposition modeling (FDM), exhibit behavioral anisotropicity. This 
induced anisotropy can have a negative impact on functionality of the part, and must be considered. To the best of our knowledge, a 
robust TO method to handle anisotropy has not been proposed. In the present work, a strength-based topology optimization method for 
structures with anisotropic materials is presented. More specifically, we propose a new topological sensitivity formulation based on 
strength ratio of non-homogeneous failure criteria, such as Tsai-Wu. Implementation details are discussed throughout the paper, and the 
effectiveness of the proposed method is demonstrated through numerical and experimental tests.  

Keywords Topology Optimization, Additive Manufacturing, Level-set 
method, Pareto tracing, Anisotropic Materials, Strength, Failure Index, 
Tsai-Wu. 
 
1. Introduction 

Additive manufacturing (AM) is becoming increasingly popular 
for fabricating prototypes, and customized production parts. 
Furthermore, AM is well-suited for small-batch production and 
on-spot fabrication where transporting built parts is expensive or 
even impossible. Currently, the most accessible AM technology 
is Fused Deposition modeling (FDM) where material is extruded 
from a nozzle, and the part is built layer by layer. FDM is fairly 
robust with respect to build scale and material [1]. This, along 
with other advantages such as ease of use, portability, 
affordability, and safety make FDM very promising in producing 
functional parts in applications such as: 

a) Large-scale printing (cars and houses) [1], [2] 
b) Biomedical customized parts [3] 
c) Electronics-embedded designs, e.g. Figure 1 [4] 
d) Printing in hostile places, e.g. space missions [5] 

  
Figure 1:  FDM printed functional quadcopter. Printed via Voxel8   

with embedded electronics and endures structural loading [4].  

Topology optimization (TO) [6]–[8] is used at early stages of 
design to automatically reduce weight and material usage while 

satisfying constraints on performance. AM and TO complement 
each other in that organic and complex designs generated through 
TO can be manufactured through AM technologies. On the other 
hand, the cost of AM parts increase significantly with material 
usage. Thus optimizing designs can be crucial in saving material 
usage, build time, and post-process time [9]. 
However, there are certain challenges in TO for AM which need 
to be addressed before the two fields can be seamlessly 
integrated. Material anisotropy and weakness along build 
direction, especially in FDM, is an important consideration. This 
issue becomes more critical when the part is functional and has 
to satisfy strength-related constraint. There are mainly two types 
of anisotropy, namely 1) intrinsic e.g. composites and 2) process 
induced. Intrinsic anisotropy is often favorable since it can 
provide more freedom through intentionally creating directional 
preference in behavior.  On the other hand, process-induced 
anisotropy is the result of process limitations and is often 
unfavorable. In this paper, we focus on addressing material 
anisotropy induced throughout FDM process due to lack of 
interlayer fusion as illustrated in Figure 2. Note that anisotropy 
in FDM could manifests itself in two ways: 1) anisotropic 
constitutive properties relating stress and strain, and 2) 
directional strengths. However, current experimental results 
suggest that in some cases (see section 4), printed parts exhibit 
isotropic constitutive properties [10]. The focus of this paper is 
on strength anisotropy.  
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Figure 2: Micro fractographs of 3D printed samples using FDM. 

Different raster orientations plays and important role in mechanical 
behavior of parts [11].    

In section 2 we will review literature on stress-constrained TO 
for both isotropic (2.1) and anisotropic (2.2) materials. In section 
3 we will describe the proposed method and define the strength-
based TO problem (3.1), perform sensitivity analysis (3.2 and 
3.3), and present the proposed optimization algorithm (3.4). 
Finally, in section 4 we demonstrate the effectiveness of the 
proposed method through numerical and experimental results. 

2. Literature Review 

A typical TO problem can be posed as follows: given an initial 
design space D , we want to find an optimal topology that 
minimizes an objective while satisfying several constraints,  
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Perhaps the most common objective is compliance for which the 
TO is fairly straight forward [12]. However, in order to design 
functional parts, we must consider minimizing stress where 
sensitivity analysis can be quite challenging due to locality and 
non-linearity of stress with respect to design variables. The 
former results in a huge number of constraints for even 
moderately complex problems, and the latter affects the 
convergence of the optimization process. Due to these 
challenges, there have been fewer attempts focusing on strength 
optimization compared to stiffness, and even less using 
anisotropic material properties.  

2.1 Strength Optimization for Isotropic Materials 

There are numerous failure criteria that have been developed for 
isotropic materials over the years; the most common ones are 
based on maximum principal stress by Rankine, maximum 

principal strain by St. Venant, total strain energy by Beltrami, 
maximum shear stress by Tresca, and octahedral shear stress by 
von Mises. Among these, Rankine is best suited for brittle 
materials and vonMises agrees best with ductile materials [13].  

Earlier attempts towards producing strength-based optimum 
structural designs were mainly focused on shape optimization 
[14], [15] and topology optimization of trusses [16]. It was 
believed by many [17]–[20] that the optimal design might be an 
isolated or singular point in the design space. For instance for 
truss optimization, as was shown by Kirsch [19], a singularity 
phenomenon occurs as the cross-section of a bar reaches its lower 
bound of zero. This, as explained later by Cheng and Jiang [21], 
was due to discontinuity of the stress function and the fact that 
the constraint function of the optimization problem becomes 
undefined. Cheng and Guo  [22] proposed an  -relaxation 
method as a solution to this issue, where the singular optimum 
design was eliminated from the design space; consequently, 
sizing and topology optimization could be unified in a single 
framework (also see [23], [24]). 

Since the development of homogenization method by Bendsøe 
and Kikuchi [25] and Solid Isotropic Material with Penalization 
(SIMP) method by Bendsøe [26], many different strategies have 
been proposed for stress-based TO. For instance, Xie and Steven 
[27] proposed an evolutionary method, in which elements with 
lower von-Mises stress are gradually rejected. This approach 
could lead to sub-optimal designs, due to locality nature of stress 
[28].  

Perhaps the most popular TO method is SIMP, where a pseudo-
density variable ρ  ( 0 1ρ≤ ≤ ) is used to describe material 
distribution. Yang and Chen [29] used a global stress measure 
such as Kreisselmeier-Steinhauser or Park-Kikuchi as the 
objective function. In particular, their objective was a weighted 
average of compliance and the p-norm of a stress measure. 

It is well-known that as ρ  approaches 0, the stress values can 
become singular, which results in the same type of singularity 
phenomenon discussed above. In order to overcome this 
problem, Duysinx and Bendsøe [30], proposed an  -relaxation 
scheme for SIMP. Bruggi and Venini [31] and Bruggi [32] 
proposed an alternative qp-approach to remedy the singularity 
problem, which required less computational effort. Le et al. [33] 
proposed a formulation based on normalized stress p-norm and a 
density filter to control length scale.  París et al. [34], proposed a 
TO method considering local and global stress constraints. They 
later extended their work in [35] by developing block aggregated 
approach, where one stress constraint was assigned to a group of 
elements. As was shown in [30], TO with a global stress 
constraint can be too coarse and might yield results similar to 
those of stiffness optimization. The clustered approach can avoid 
stress concentrations and give better designs while not being too 
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expensive. Along these lines, in [36], the number of stress 
constraints are reduced by clustering several stress evaluation 
points into groups. 
The level-set (LS) method [7], [37], [38] is another popular 
approach for TO, where the boundaries of the design are defined 
as zero level sets of a scalar level-set function. In the 
conventional form, the Hamilton-Jacobi partial differential 
equations have to be solved to update design boundaries.  
In [39], Miegroet and Duysinx proposed a LS method to 
minimize the stress concentration of 2D fillets. The approach 
uses X-FEM, which enriches classical finite element method 
(FEM) with several discontinuous shape functions. Svanberg and 
Werme [40], presented two sequential integer programming 
methods, where a sequence of linear or quadratic sub-problems 
with decreasing mesh sizes are solved and on the fine level. A LS 
method was proposed in [41] to minimize stress of designs in 2D 
and 3D, where the Hamilton-Jacobi transport equation governs 
the evolution of the LS.  
In this framework no new holes can be introduced into the design 
and only pre-existing features can merge together, making the 
optimized design heavily dependent on the initial design. To 
overcome this challenge, the topological sensitivity field based 
level-set  was introduced  in  [42]–[44]. A rigorous mathematical 
formulation was later provided by Novotny et al. [12]. In essence, 
topological sensitivity is the first-order change in objective 
functional if a small hypothetical hole is introduced in the 
domain. 
Amstutz and Novotny [45] developed the topological derivatives 
for a stress-based objective function consisted of compliance, 
volume, and the p-norm of von Mises stress. Xia et al. [46] 
introduced a global measure of stress based on von Mises stress 
and Heaviside function. The sensitivity analysis was then carried 
out by solving an adjoint problem [47]. Finally, the optimization 
problem was solved using LS method. Suresh and Takalloozadeh 
[48] proposed a LS-based Pareto-front tracing algorithm. The 
proposed LS method used p-norm of von-Mises stress as the 
global measure to solve the optimization problem. Cai et al. [49] 
integrated LS function and B-spline finite cell method to improve 
the accuracy of stress and sensitivity evaluation. A combination 
of LS and augmented Lagrangian was introduced in [50], where 
stress constraints were assigned to a neighborhood of nodes to 
capture local effects while remaining continuous. Cai and Zhang 
[51] recently proposed an LS method for free-form design 
domains using Boolean operations. The method also exploits a 
dynamic aggregation technique to reduce the number of local 
stress constraints.  
Although the topological sensitivity is a well-established 
concept, it is mainly used when underlying material properties 
are isotropic, i.e. when closed-form gradients can be efficiently 
evaluated. Although there have been valuable theoretical 
contributions towards computing anisotropic topological 

sensitivities, they have not yet been employed in an optimization 
algorithm successfully.  Schneider and Andrä [52] proposed a 
closed-form solution for topological sensitivity for materials with 
anisotropic constitutive properties, which involves considering 
ellipsoidal inclusions and computing Eshelby’s tensor. Delgado 
and Bonnet [53] also proposed an asymptotic topological 
sensitivity for anisotropic stress functionals. In both cases the 
mathematical derivations are extremely complex and are yet to 
be exploited in an efficient optimization framework.  
In sub-section 2.2 and section 3, we will discuss an alternative 
sensitivity analysis based on generalized failure criteria and 
discrete element sensitivity. 
2.2 Strength Optimization for Anisotropic Materials 

A generalization of von Mises criterion was introduced by Hill 
[54] for orthotropic materials. Later, Azzi and Tsai [55] 
presented another failure criterion, generally known as Tsai-Hill 
criterion that simplified Hill’s criterion for unidirectional 
composites. However, Hill and Tsai-Hill criteria did not take into 
consideration the behavioral differences between tension and 
compression. This limitation was overcome by Hoffman [56] by 
including additional linear terms. Encompassing these ideas, Tsai 
and Wu [57] proposed a general criterion for anisotropic 
materials in the following tensor form,  
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Often the coupling between shear terms can be neglected [58]; 
Equation (3) can then be reduced to that of Equation (5), 

 1= + ≤    (5)  
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The coefficients are given by: 
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where , ,t t tX Y Z  are tensile strengths, , ,c c cX Y Z  are 

compressive strengths, and 23 31 12S ,S ,S  are shear strengths. 

Tsai-Wu criterion is widely used due to its 1) invariance with 
respect to basis, 2) symmetry, and 3) generality.  
It has also been used in the context of optimization. In order to 
optimize fiber orientations in composite laminates, Groenwold 
and Haftka [59] proposed a sensitivity analysis based on the Tsai-
Wu criterion. However, it was shown in [59] that using a non-
homogeneous failure index such as Tsai-Wu as the objective 
function would be load-dependent (sensitive to load intensity) 
and may result in counter-intuitive designs. To overcome these 
limitations, they proposed using the safety factor or strength-ratio 
discussed in the next section.  

2.3 Maximizing Anisotropic Strength 

Consider the failure index in Equation (5): 

 1 0+ − ≤   (8)  

Observe that this applies at each point within the domain, i.e., in 
practice, at each element within the mesh. For reasons, discussed 
above, it was proposed in [59] that one should consider the safety 
factor (also referred to as strength ratio), defined as the positive 
solution to the quadratic Equation (9), 

 2 1 0e es s+ − =   (9) 

i.e., 

 
2 4=

2es − + +  
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The goal therefore will be to maximize the safety factor at each 
element. Alternately, the goal is to minimize the failure index at 
each element, defined as: 

 
1

e
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One can aggregate these failure indices via the p-norm ([33], [46], 
[48], [60]) into a single global failure index: 

 ( )
1

p
p

e ep
e

γ γ γ = =  
 
∑   (12) 

In this paper we will devise a TO framework based on the 
objective in Equation (12). 

3. Proposed Strategy 
In this section, we will discuss the optimization problem (3.1), 
proposed sensitivity analysis (3.3), and optimization algorithm 
(3.4). 

3.1 Optimization Problem 
Based on the discussion in the previous section, the TO problem 
considered in this paper is: 
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where J  is the (user defined) allowable compliance at the 
target volume fraction. Observe that (1) a compliance constraint 
is essential to avoid pathological conditions [61], (2) the failure 
criteria of Equation (5)  is not explicitly imposed since it is 
absorbed into the objective; however, this can be easily imposed 
as an additional check.  

3.2 Sensitivity Analysis 
To solve the TO problem of Equation (13) one must first 
compute the sensitivity of the objective and compliance 
constraint. 
To this end, let us consider the corresponding Lagrangian [62]: 

 ( ), ; ( )J JL J Jλ γ λΩ = − −u   (14) 

where Jλ  is the Lagrange multiplier associated with the 
compliance constraint. 
Recall that the topological sensitivity at a point p for any quantity 
of interest ϕ  is defined as [48]: 

 0
20

( ; )
( ) lim

r

r p
p

rϕ
ϕ ϕ
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−
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One can apply this concept to the Lagrangian [63] as follows:  

  L J Jγ λ= −     (16) 

While closed-form expressions for the topological sensitivity of 
the compliance exist [64], a closed-form expression for the 
failure index does not exist. We will therefore consider an 
alternate ‘discrete element sensitivity’, defined as the change in 
any quantity of interest when a single element ‘e’ is deleted from 
the mesh:  
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eϕ

ϕ ϕΩ− − Ω
≡   (17) 

where | |e  is area of the element.  
Similar to Equation (16), the discrete sensitivity can be applied 
to the Lagrangian resulting in: 

 L J Jγ λ= −     (18) 

For compliance, one can show that the discrete sensitivity is 
given by (see [65]): 

 T
J e ee= u K u   (19) 

Figure 3 compares discrete sensitivity against the topological 
sensitivity for compliance for the L-bracket. Observe that the two 
fields are quite similar since they essentially capture the first 
order change in compliance when material is removed.  
In the next section, we focus on computing the discrete 
sensitivity γ for anisotropic strength. 

 
Figure 3: a) L-bracket geometry, b) topological sensitivity J  

and c) discrete element sensitivity 
J
 [65]. 

3.3 Sensitivity Analysis of Strength  
To compute γ we use the strategy proposed in [48]. 

Specifically, using the chain rule we have: 

 ( ) ( )T
γ γ= ∇u u    (20) 

where ( )u  is the change in displacement field due to the 
deletion of an element. One can show that this is given by [65]: 

 ( )1( ) e
−= ∆u K K u   (21) 

where e∆K  is the corresponding element stiffness matrix 
(mapped to the global indices). Substituting Equation (21) in 
Equation (20) leads to: 

 ( ) ( )1T
eγ γ −= ∇ ∆u K K u   (22) 

Further, define the vector 

 γ≡ ∇ug   (23) 

In the Appendix of this paper, we show that a computable 
expression can be derived for g , i.e., g can be computed as a 
post-processing step. Thus, we have: 

 ( )1T
eγ

−= ∆g K K u   (24) 

Now define and solve the adjoint problem: 

     T=K g     (25) 

Thus: 

 ( )T
eγ = ∆K u    (26) 

This can be simplified to an element-wise construction [65], 

 T
ee eγ = K u   (27) 

Thus, the element-wise discrete sensitivity of the Lagrangian is 
given by Equation (18). 

3.4 Algorithm 
Once the discrete sensitivity fields are computed, we can use the 
algorithm discussed in this section to solve the TO problem of 
Equation (13).  
The Lagrange multiplier in Equation (18) can be dynamically 
computed through the augmented Lagrangian method described, 
for example in [62].  Here, we will use an alternate (and 
equivalent) updating scheme proposed in [48] where the 
Lagrangians are interpreted as weights: 

(1 )
0 1

L Jw w
w

γ= + −

≤ ≤

  
  (28) 

Similar to the augmented Lagrangian method, the weights are 
dynamically updated as follows. To begin with, the weight w  is 
set to 1, i.e.,  the topology is entirely driven by the objective (to 
minimize anisotropic failure).  
The resulting sensitivity field is directly interpreted as a level-set, 
leading to the PareTO (Pareto-tracing Topology Optimization) 
discussed in [8], [48], [65], [66]. Using fixed-point iteration, the 
a small-step (that is dynamically modified) is taken along the 
Pareto curve. If the compliance constraint is violated the weight 
is reduced by a factor η  (similar to the augmented Lagrangian 
method). The overall algorithm is illustrated in Figure 4 and the 
details are as follows: 
 



6 
Authors: A.M. Mirzendehdel, B. Rankouhi, K. Suresh 

 
Figure 4: The proposed algorithm 

0. Initialization: we start with an initial design space D  
where current volume fraction v  is set to 1.0, and at 
every TO step v  is reduced by v∆  (typically 0.025). The 
weighting factor w  in Equation (28) is initialized to 1.0.  

1. Solve the finite element problem on the current 
topologyΩ . 

2. Compute discrete element sensitivity L  via Equations 
(19) and (27). 

3. Compute level-set cutoff isovalue   using fixed-point 
iterarion. 

4. Update topology.   
5. Check if current τ has converged,  
6. If not, reduce weight w  by a factor 0 1η< < (typically 

0.9η =   ) and go to step 1. 
7. Check if desired volume has been reached or any of the 

constraints are violated. 
8. If not, reduce volume by v∆   and repeat from step 1. 
9. If yes, generate isosurface of the final design. 

4. Experiments and Validations 
In this section, we demonstrate the effectiveness of proposed 
method through numerical and experimental examples. Due to 
complexity of FDM-induced anisotropy, the experiments are 
conducted under the following assumptions.  

Constitutive Properties. As discussed in Section 1, the (stress-
strain) constitutive properties of FDM-printed parts are affected 
by numerous parameters. Here, we use the constitutive properties 
of ABS recently reported by Riddick et al. [10] considering 45±  
raster orientation. It was reported in [10] that the primary 
constitutive properties namely, the Young’s modulus and 
Poisson ratio were the same along both  the raster orientation (S1) 
and build direction (V1), specifically, 2.76E GPa=  and 

0.38ν = .  Thus, it exhibits isotropic constitutive properties (but 
not isotropic strength). 
Anisotropic Strengths. For the Tsai-Wu failure criteria, 9 
strength components (3 tensile, 3 compressive, and 3 shear) must 
be evaluated. We will use strength values reported in relevant 
literature (see Table 1).  The three compressive strengths and 
three shear strengths are approximated according to the results 
reported in Ahn et al. [67] and Ahn et al. [68].  The three tensile 
strengths are assumed to be consistent with values reported in [10] 
considering 45±   raster orientation (S1 and V1).    
Note that these simplifications are merely a convenience; the 
topology optimization framework proposed in the paper can 
handle alternate models. 

Table 1: Material strengths 

 

Interaction Coefficients. The three in-plane interaction terms

12C  , 13C  , and 23C  are expressed in terms of bi-axial strengths 
and are often not readily available, especially in 3D. The 
approximate values for these coefficients are consistent with [59] 
(see Equation (7)). More careful examinations on the effects of 
geometry and print parameters on these parameters and 
subsequently Tsai-Wu criterion is required. 
For computing p-norm 6p = . All numerical experiments are 
performed on an off-the-shelf desktop with an Intel Core i7 
@3.00GHz CPU and 16 GB memory. 

4.1 Stiffness Versus Strength 
In this example, we demonstrate why maximizing strength might 
yield a more suitable design than maximizing stiffness. To this 
end, let us consider the simple tensile test illustrated in Figure 5 
where the geometry is a cube with dimensions of
5 5 5cm cm cm  . A unit force is applied at the center of top 
surface while four bottom corners are fixed. Bottom surface is 
retained for experimental purposes. The goal is to find the 
strongest design while 80% of material is removed. The domain 
is discretized into 50,000 hexahedral elements.        
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Figure 5: Tensile stool. Geometry and loading. 

In order to compare the optimized design with respect to stiffness 
and strength, we first solve Equation (1) where the objective 
functional f  is compliance.  The optimized topology at 0.2 
weight fraction is shown in Figure 6a. Next, we solve the 
proposed optimization problem of Equation (13), where 
weakness in tension along build direction is considered in the 
formulation.  The optimized design is shown in Figure 6b.   

 
(a)  (b) 

Figure 6: Tensile stool. Optimized design with respect to  
(a) Stiffness (b) Strength and weak in Z. 

Figure 7 illustrates the change in γ   throughout the optimization 
process for the second experiment. Observe that since the 
objective function is not self-adjoint, the Pareto front is also not 
convex. 

 
Figure 7: Tensile stool. Optimization process. 

Experimental Validation.  To validate the numerical results, the 
designs of Figure 6 were printed and tested. An XYZ Da Vinci 
Duo was used to print four samples for each example. Samples 
were printed at 90% infill density (maximum allowable 

percentage by the software) with 2 shell layers. It is important to 
note that the build direction for all samples is the vertical 
direction and raster orientation is 45± . The same generic brand 
of ABS was used to print the specimens. Tests were conducted 
using an MTS Criterion Model 43 system with 5 kN load cell. 
Built in LVDTs measured the displacement between the grips. 
Displacement control tests were run at 5 mm/min with data 
collection rate of 100 Hz. Load and displacement were recorded 
for further analysis. Figure 9 illustrates the tensile test setup on 
an MTS criterion model 43 tensile actuator.   

   
Figure 8: Tensile stool: tensile test setup for optimized stool designs.  

Figure 9 illustrates the failed parts, observe that failure plane is 
perpendicular to the build direction. 

 
Figure 9: Tensile stool: tensile test, considering (left) anisotropic 

strengths and (right) stiffness. 

Figure 10 summarizes the tensile test results. Four samples were 
tested per design. The design optimized for stiffness on average 
endured force of about 491 N, while this was improved to 801 N 
for the optimized design considering strength and anisotropic 
behavior along build direction.  
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Figure 10: Tensile stool. Tensile test results. 

Figure 11 illustrates the force-displacement graph of both tensile 
tests. Observe that the design optimized for strength has higher 
load capacity. Further, it is worth noting that both tests indicate 
brittle fracture, which in future needs to be incorporated 
optimization process.  

 
Figure 11: Tensile stool. Typical force-displacement graph. 

4.2 Tension Versus Compression 
In this experiment, we demonstrate that the proposed method 
captures the difference between tension and compression 
loading. Consider the C-bracket of Figure 12, where the bottom 
left surface is fixed. The domain is discretized into 20,000 
hexahedral elements. In examples of Figure 12a and Figure 12b 
a downward and an upward force is acting at the right tip, causing 
the fillet to be under compression and tension, respectively.  
The objective is to find the strongest design while removing 50% 
of the material. 

 
Figure 12: C-Bracket. Geometry and loading for a) Compression at 

fillet and b) Tension at fillet. 

To compare the results, we first find the strongest design based 
on vonMises criterion [48], for which the result is shown in 
Figure 13a. Note that since vonMises does not capture directional 
preference, for both load cases the optimized design is the same. 

Observe that in the case of downward load, vonMises criterion 
fails to identify the actual failure region verified through 
experiment. 
 Next, the Tsai-Wu criterion was used to find the optimal 
topologies. Figure 13b illustrates the optimized design when the 
fillet is under compression. The optimized design is similar to 
that of Figure 13a with isotropic strengths. However, Tsai-Wu 
criterion successfully identifies the actual region of failure. 
Figure 13c illustrates the optimized design when the fillet is 
under tension. Observe that in order to reduce stress 
concentration, the proposed optimizer increases the fillet radius. 
Moreover, Tsai-Wu criterion successfully identifies the actual 
failure point. 
 

  
Figure 13: C-Bracket. Optimized designs with underlying stress field. 

a) Isotropic strength with vonMises field b) Weak Z compression at 
fillet with Tsai-Wu field and c) Weak Z tension at fillet with Tsai-Wu 

field. 

Experimental Validation. To compare the performance of 
optimized designs under loadings of Figure 12a and Figure 12b, 
each design was printed using the same printer with the same 
printing parameters as mentioned before. The sample size is four 
for each design. A custom test fixture was designed to 
accommodate both tests in tension and compression. Testing 
parameters were also kept the same for the C-Bracket in both set 
of tests. 
Figure 14 shows the test setup for exerting downward force and 
causing compression at fillet. Figure 15 shows the bending test 
results for C-bracket under compression. Results show a 
statistically equal strength for both designs. This conclusion 
agrees with von Mises and Tsai-Wu criteria predictions.  
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Figure 14: C-Bracket Fillet under compression. Test setup.  

  
Figure 15: C-Bracket: fillet under compression. 

On the other hand, results for bending test when C-bracket is 
under tension (Figure 16) favors heavily towards the design from 
Tsai-Wu criterion with an average maximum force of 116.1 N 
compared with maximum average force of 69.3 N (Figure 17). 

 
Figure 16: C-Bracket Fillet under Tension. Test setup. 

 
Figure 17: C-Bracket. Fillet under Tension. 

It is also worth noting that the design of Figure 13a, which is 
optimized via vonMises criterion, is about 4.7 times stronger 

under compressive load than tensile load. Since the failure plane 
is perpendicular to build direction, this is in agreement with the 
notion that FDM printed designs are much weaker in tension than 
compression along build direction. 

5. Summary and Future Work 
In this paper, we have proposed a method to compute strength 
sensitivity based on generalized failure criteria such as Tsai-Wu 
for anisotropic parts. For numerical experiments, we have 
focused on anisotropic strengths of additively manufactured parts 
where tensile strength along build direction is lower than other 
directions. Table 2 summarizes the results for the numerical 
examples.      

Table 2: Summary of Experiments (VM: vonMises, TW: Tsai-Wu) 
 

Example #DOF Time(s) 
VM/TW 

Rel. J 
VM/TW 

Rel. Obj.  
VM/TW 

Tensile stool 164,616 235/260 2.28/2.57 0.99/1.60 
C-Bracket 

(compression) 68,661 41/42 1.62/1.56 1.17/1.22 

C-Bracket 
(tension) 68,661 41/50 1.76/1.56 1.12/1.22 

The proposed framework can be extended to also include 
constitutive anisotropy, which requires accurate tensile and shear 
measurements. Also, the fact that the materials is brittle must be 
taken into consideration through a more comprehensive fracture 
model and sensitivity analysis. Moreover, the current printing 
processes introduce uncertainty in the material behavior, 
considering robustness can also be beneficial. Furthermore, the 
sensitivity can be extended to strength-based multi-material 
topology optimization. For multiple materials, since each 
material has its own strength, vonMises criterion is inadequate 
and more generalized failure indices are suitable. However, local 
de-bonding effects must also be considered.  
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Appendix 
Consider the definition in Equation (23). Exploiting the p-norm 
definition in Equation (12), we have: 

 ( ) ( )
1/ 1

11 e
p

e e
e

p
e

pp
p

γ
γ γ

−
− ∂   =    ∂   

∑ ∑g
u

  (29) 

must solve the following adjoint problem [65], 
     T=K g     (30) 

where   is the adjoint solution and Tg  is the adjoint force. 
We are assuming hexahedral elements (with 8 nodes). Recalling 
Equations (5) and (10), the inverse of the strength ratio at each 
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element e  depends on individual stress components at that 
element, which are evaluated as follows: 
 { }( ) [ ] [ ]( ) { }( )6,1 24,1(6,6) 6,24

uD Bσ =    (31) 

where [ ]D  is material tensor, [ ]B is the gradient matrix, and  

 
{ }( ) { }
{ }( ) { }

11 22 33 23 31 126,1

1 1 1 8 8 824,1u

T

u v w u v w

σ σ σ σ σ σ σ=

= 

  (32) 

Hence, in order to evaluate Equation (23) we must evaluate 
Equation (34): 
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d
d
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 (33) 

where  and   are defined in Equation (5) and their derivatives 
are the generalization of the equations in [48], 
 

( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )

12 1,: 22 2,: 11 13 1,: 33 3,: 11

23 2,: 33 3,: 22

11 1,: 11 22 2,: 22 33 3,: 33

44 4,: 23 55 5,: 31 66 6,: 12

2

C F F C F F

C F Fd
d C F C F C F

C F C F C F

σ σ σ σ

σ σ

σ σ σ

σ σ σ

 + + +
 
 + +
 =
 + + +
 
+ + +  

u


 (34) 

1 1,: 2 2,: 3 3,:
d C F C F C F
d

= + +
u


 (35) 

 
and 
[ ]( ) [ ]( ) [ ]( )6,24 6,6 6,24
F D B=  (36) 

It is worth noting that in Equation (30), material anisotropy 
affects both stiffness matrix K  through material tensor D  and 
adjoint force Tg  (through Tsai-Wu coefficients , 1,... ,6ijC i j = ).  
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