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ABSTRACT* 

The focus of this paper is on topology optimization of 
continuum structures subject to thermally induced buckling. 
Popular strategies for solving such problems include Solid 
Isotropic Material with Penalization (SIMP) and Rational 
Approximation of Material Properties (RAMP). Both methods 
rely on material parameterization, and can sometimes exhibit 
pseudo buckling modes in regions with low pseudo-densities. 

Here we consider a level-set approach that relies on the 
concept of topological sensitivity. Topological sensitivity 
analysis for thermo-elastic buckling is carried out via direct and 
adjoint formulations. Then, an augmented Lagrangian 
formulation is presented that exploits these sensitivities to solve 
a buckling constrained problem. Numerical experiments in 3D 
illustrate the robustness and efficiency of the proposed method. 

1. INTRODUCTION 

Topology optimization has rapidly evolved from an academic 
exercise into an exciting discipline with numerous industrial 
applications [1], [2]. Applications include optimization of 
aircraft components [3], [4], spacecraft modules [5], automobiles 
components [6], cast components [7], compliant mechanisms 
[8]–[11], etc. 

The focus of this paper is on topology optimization of 
structures subject to thermo-elastic buckling. As an illustrative 
example, consider the wing rib structure of a high Mach 
supersonic aircraft in Figure 1. During rocket boost, the aircraft 
is subject both to rapid acceleration and significant thermal 
gradients, with surface temperature as high as 01650 C . Since the 
rib structures are welded onto the wing skins, uneven thermal 
heating may induce significant compressive stresses, resulting in 
buckling. Therefore, such structural components operating in 
extreme thermal environment must be designed to resist thermo-
elastic buckling.  

Thermo-elastic buckling poses both theoretical and 
computational challenges. In Section 2, popular methods for 
buckling-constrained topology optimization are reviewed, and 
the challenges are identified. In Section 3, we provide a brief 
overview of topological sensitivity based optimization; this is 
followed by the proposed method and its implementation. In 
Section 4, numerical experiments are presented, followed by 
conclusions in Section 5. 

                                                        
 

 

Figure 1: (a) aircraft operating in high temperature 
[www.buran-energia.com]; (b) wing design 

[www.ae.metu.edu.tr]; (c) a  rib structure; (d) optimizing the rib 
structure to resist thermo-elastic buckling. 

2. LITERATURE REVIEW 

2.1 Buckling constrained topology optimization 

Buckling typically occurs in thin-walled structures [12]. 
Buckling constrained topology optimization was originally 
studied using ground structure (truss based) approaches, while 
more recent methods are continuum based; the latter can be 
classified into the following types: Solid Isotropic Material with 
Penalization (SIMP), evolutionary structural optimization (ESO) 
and level-set. The ground structure and continuum methods are 
reviewed next. 

2.1.1 Ground structure  

Ground structure approach is the classic method for 
optimizing the topology of truss systems. In this approach, a 
network of truss members is first prescribed in a design domain. 
A size optimization is carried out on each truss member until the 
cross-section areas of non-optimal trusses approach zero, and can 
therefore be removed [13].    

 However, including buckling constraint in truss optimization 
is non-trivial. The forces in each truss member must satisfy 
constraints which discontinuously depend on design variables 
[14]. Traditional optimizers face difficulty in solving such 
problems. In [14], the author argued that including slenderness 
constraints into buckling problems can guarantee existence of 
solution, and simplify the algorithm. In [15], by using a 
smoothing procedure to remove singularity, size optimization 
was made more efficient. In a recent publication [16], the author 



 

used a mixed variable formulation to linearize buckling 
constraint over each structural member. 

2.1.2 SIMP 

In continuum topology optimization, the most popular 
method is Solid Isotropic Material with Penalization (SIMP). Its 
primary advantages are that it is well understood, robust and easy 
to implement [17]. Indeed, SIMP has been applied to a variety of 
topology optimization problems ranging from fluids to non-
linear structural mechanics.  

In thermo-elastic topology optimization, it was pointed out in 
[18] that the material interpolation used in SIMP exhibits zero 
slope at zero density, leading to robustness issues. To overcome 
this deficiency the Rational Approximation of Material 
Properties (RAMP) was developed, and its superior performance 
over SIMP was published in [19]. In [20], [21], a porous material 
penalization model was proposed for both macroscopic and 
microscopic material densities. It was also argued that in thermo-
elasticity, porous material model with optimal microstructures 
perform better. In [22] a robust three-phase topology 
optimization technique was used to design a multi-material 
thermal structures with low thermal expansion and high 
structural stiffness. 

In buckling constrained topology optimization, the 
appearance of pseudo buckling modes in low-density regions can 
pose problems. In [23], a buckling load criterion was introduced 
to ignore the geometric stiffness matrix of the elements whose 
density and principal stress were smaller than a prescribed value. 
In [24], the author argued such cut-off methods may abruptly 
change the objective function and sensitivity field, leading to 
oscillation. Instead, the author suggested using different 
penalization scheme for stiffness matrix and geometric stiffness 
matrix. Although the author in [25] suggested it was difficult to 
select an appropriate penalty scheme for accurate calculation of 
buckling load factor, the proposed approach by [24] became a 
popular formulation for many researchers [26]. In a recent 
publication [27], a new approach to remove pseudo buckling 
mode was based on eigen-value shift, and pseudo mode 
identification.  

2.1.3 ESO 

ESO [28] is an alternate topology optimization formulation 
where finite elements are gradually removed based on their 
significance with respect to the objective function. BESO [29] 
addresses some of the limitations of ESO by permitting insertion 
of elements. In [30], a modified ESO method was proposed to 
maximize buckling load factor. The sensitivity of the lowest 
eigen-value was first derived, and the buckling eigen-value 
maximization was then formulated by suitably selecting the 
optimization criteria. 

2.1.4 Level-Set 

The concept of level-set was first proposed in [31] to model 
the evolution of interfaces in multi-phase flows, and image 
segmentation problems [32]. In structural optimization, the level-
set method is used to capture the evolving topology, and this 
leads to well-defined boundaries over which mechanical 
response can be accurately computed, avoiding the ambiguity 
associated with density-based approaches.  

Specifically, in [33], the level-set method was coupled with 
ESO to nucleate holes, and to move boundaries based on an 
evolutionary stress criteria. In [34], the level-set was exploited to 
create a shape sensitivity based optimization framework. This 
was later developed to  include topological derivative, and 
implemented in a shape sensitivity based level-set formulation 
[35], [36]. The initial approach to propagate level-sets was 
through Hamilton-Jacobi equation [34], but this was gradually 
replaced by mathematical programming due to higher efficiency 
and better constraint control [37]. 

In recent years, the level-set method has been extended to a 
variety of problems. For example, in [38], a level-set method was 
implemented to minimize structural compliance while 
maintaining fiber paths smooth, and manufacturability for 
steered fiber composites.  

With specific reference to buckling-constrained topology 
optimization, in [39], a simplified buckling sensitivity field was 
incorporated into a level-set based framework to accelerate large-
scale topology optimization process, however thermally induced 
buckling was not considered.  

Further, switching of critical buckling modes can lead to slow 
convergence, and/or result in infeasible designs [40]. A robust 
framework was developed in [40] to compute large number of 
buckling modes efficiently, thereby addressing mode-switching. 
This paper does not address mode-switching; instead the focus is 
on thermally induced buckling. 

2.2 Research Gaps 

As will be demonstrated through numerical experiments (see 
Section 4), thermal effects can be significant on the final 
topology in buckling constrained optimization. In particular, 
thermal effects can lead to increased compressive loads, and 
therefore buckling, However: 

 There has been very little research on thermally induced 

buckling constrained topology optimization. 

 As discussed in [40], including buckling constraints can be 

expensive; the authors of [40] address this through block-

Jacobi and Eigen-vector recycling. In this paper, we consider 

assembly-free methods for fast computation of buckling 

modes, complementing the framework proposed in [40]. 

 Prior researchers have validated their algorithms on simple, 

typically 2D, examples. In this paper, we consider large 

scale 3D problems, with close million degrees of freedom. 

In this paper, the objective is to minimize the volume fraction, 
subject to several constraints, including thermo-elastic 
compliance and thermo-elastic buckling load factor. Specifically, 
we consider the topological level-set method proposed in [39] for 
pure-elastic buckling problems, and extend this to thermo-elastic 
buckling through two distinct approaches: direct and adjoint 
methods. In the topological level-set method, instead of relying 
on the Hamilton-Jacobi equations for level-set propagation [41], 
fixed-point iteration is exploited to advance the topology [42].  

3. PROBLEM FORMULATION AND ALGORITHM 



 

3.1 Optimization problem formulation 

A generic thermo-elastic bucking and compliance 
constrained topology optimization problem may be posed as: 
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where: 
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In other words, the objective is to find the optimal topology 
with minimal volume within the design domain ( D ) while 
satisfying prescribed compliance and buckling constraints. 
During the optimization process, the displacement and 
temperature fields are calculated from thermo-elastic finite 
element analysis.  

3.2 Thermo-elastic FEA  

For completeness, we summarize finite element formulations 
of (weakly-coupled) thermo-elastic problems; recall that such 
problems reduce to solving two linear equations [12]: 

 tK t = q  (3) 

 st thKd = f = f + f  (4) 

The elemental thermal load vector in Equation (4) is formed via 
[12], [43]: 
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The stresses are obtained by subtracting the thermal strain 
from the total strain, and multiplying the resulting strain by the 
material tensor: 

 
th

e e eσ = DBd - Dε   (8) 

Further details may be found, for example, in [44]. The 
compliance for a thermo-elastic system is defined as: 

 J  th T T(f + f ) d = d Kd   (9) 

However, if  there is no structural load ( 0f in Equation (9)), 
minimizing compliance is questionable since in the absence of an 
external load, the best structure is no structure. Therefore, in this 
paper, we consistently assume there exists a structural load to 
prevent the ill-posed problem.  

We also assume that the temperature within the design 
domain is spatially uniform, i.e., solving Equation (3) becomes 
unnecessary. If the temperature fields are dependent on the 
design [45], the calculation of topological sensitivity must 
necessarily involve solving Equation (3). 

Finally, observe that Equation (4) represents a weakly-
coupled problem where the thermal field influences the 
displacements, but not the reverse. Strongly-coupled thermo-
elastic problems are beyond the scope of this paper.  

3.3 Buckling FEA 

The linear buckling load factor can be calculated from the 
well-known formulation [12]: 

  σ(K + K )υ = 0   (10) 

where 

:  Global geometric stiffness matrix

:  Linear buckling load factor

:  Buckling mode vector


σK

υ

 

In Equation (10), the global geometric stiffness matrix is 
defined via the assembly: 
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where N is the number of finite elements and the elemental 
geometric stiffness matrix are defined as: 
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where G is obtained from shape functions by appropriate 
differentiation and reordering [12]. The matrix S  is defined as: 
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In addition, the stress in an element is defined as: 

 [ ] [ , , , , , ]Te x y z xy xz yz     σ   (15) 

It is clear that, in Equation (10), the geometric stiffness 
matrix σK  is a function of stress ( σ ) which in turn depends on 

the topology, while the stiffness matrix ( K ), buckling load 
factor (  ) and buckling mode vector ( υ ) are explicitly 
dependent on the topology. It is also noted since the temperature 
field is uniformly elevated to a prescribed value, the temperature 
field ( t ) is not dependent on the topology. 

A practical challenge that arises in solving large-scale 
topology optimization is the computational costs rising from the 
underlying FEA. To address the computational cost, we rely here 
on the assembly-free deflated conjugate gradient (AF-DCG) 
method proposed in [46]. The assembly free method rests on the 
observation that the computational bottle-neck in modern 
architecture is memory access [47]. The AF-DCG computes the 
preconditioner and the solution to the underlying linear system in 
an assembly-free manner, significantly reducing memory 
bandwidth, and therefore speeding up FEA. 

3.4 Buckling sensitivity analysis 

We now focus our attention on computing sensitivities that 
are essential for topology optimization. Let Q be any quantity of 
interest in an optimization problem. The sensitivity of Q with 
respect to a topological design variable x  is denoted by: 

 Q
Q
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The derivatives of the global stiffness matrix and geometric 
stiffness matrix will be denoted by: 
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In this section, two approaches are used to calculate the 
sensitivity, specifically for the linear buckling load factor  . 

3.4.1 Direct method 

Multiplying the buckling mode vector ( Tυ ) on both sides of 
Equation (10), and taking the derivative with respect to design 
variable, we have: 

 ' '   T T
σ σ σ2υ (K + K )υ + υ (K + K + K )υ = 0   (19) 

Due to Equation (10), the first term in Equation (19) vanishes. 
Reordering terms in Equation (19), we have the sensitivity of the 
linear buckling load factor as: 

 
( ')T 


 

   σ
T

σ

υ K K υ

υ K υ
  (20) 

A simple method to calculate 'σK is to use finite difference. 

Obviously, this method is too expensive and potentially 
inaccurate. Instead, we consider the following direct approach 
first.  

Observe that Equation (18) can be written as the summation 
over all finite elements:  
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where N  is the number of all finite elements, i.e., the sensitivity 
of the global geometric stiffness matrix is the summation of 
sensitivities over all elements. 

For a specific element ‘j’ in Equation (21), one can further 
expand the sensitivities over the six stress components: 
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Further, by definition: 
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Since the geometric stiffness matrices in elements other than ‘j’ 
are not explicitly dependent on the stress in j-element, the second 
term in numerator of Equation (23) drops out: 
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0 0

0 0

0 0

k

k k

k



 



 
 
 
  

  
  

 
 

  

s

S s

s

  (25) 

For the six stress components in Equation (15), it is easy to 
calculate the contributions in Equation (25). For example, when 

1k  , we have:  
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Next, the term ( jk  ) in Equation (22) can be derived as 

follows. Rewrite Equation (8) for the j-element: 

 th
j j jσ = DBd - Dε   (27) 

where the elemental thermal strain (
th
jε ) can be calculated in 

Equation (6). Since we have assumed a uniform temperature 
increase, this is independent of design variable. Taking the 
derivative of each term in Equation (27), we have: 
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j j jσ = D Bd + DBd   (28) 

We can calculate the term (
j
d ) in Equation (28) in the 

following manner. Taking derivative of the static equilibrium 
equation in Equation (4): 

    thKd+Kd f   (29) 

where the structural force is assumed to be independent of design 
variable. Reordering terms, we have  

 1( )   thd K f K d   (30) 

The elemental displacement sensitivity in j-element (
j
d ) can 

be directly obtained from Equation (30).  

In summary, the direct method proceeds as follows: (1) the 
derivative of the global geometric stiffness matrix is computed 
with respect to each stress component for every element using 
Equation (24); (2) the derivative of the global stress vector is 
computed using Equation (28); (3) the two results are combined 
using Equation (21) and Equation (22); and (4) finally Equation 
(20) is used to arrive at the final sensitivity of the linear buckling 
load factor  .  

The direct method is easy to derive and implement. However, 
it will be demonstrated in the numerical experiments that it is 
computationally inefficient for the following reason: calculating 
  in Equation (30) requires solving a global problem for each 
element. This is impractical even for simple finite element 
models. 

3.4.2 Adjoint method 

An alternative and efficient way is by using adjoint variables 
and constraints. By carefully selecting the adjoint variables, the 
computationally expensive terms can be eliminated. This was 
first proposed in [48] for structurally inducted buckling problems. 
Here, we consider its generalization to thermo-elastic problems.  

Multiplying buckling mode vector ( Tυ ) on both sides of 
Equation (10) and augmenting this with the two constraints 
multiplied by two suitable adjoint variables ( μ ) and ( w ), we 

have: 

 ( ) [ )] ( ) 0T T
th      Tυ K K υ μ σ Yd Zε w f Kd   (31) 

In the above equation, the matrix ( Y ) and ( Z ) relate 
displacement and thermal strains to stresses, respectively.  
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In Equation (31), the adjoint μ  links the stresses to 

deformation, and the adjoint w links the deformation to external 
load. Then taking the derivative of Equation (31) and simplifying 
terms, we get: 
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The first adjoint ( μ ) is chosen such that the terms with ( σ' ) 

can be dropped from Equation (34):  
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After factoring and rearranging terms, we have: 
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where the term 



K

σ
 is the assembly of all elemental 

sensitivities, each containing six components. 
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Equation (34) simplifies to: 
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The second adjoint w  is chosen such that the terms 
containing 'd  can be cancelled out: 

 ' ' 0T T μ Yd w Kd   (39) 

After rearranging terms, we have: 

 1T T  w μ YK   (40) 

Therefore, the sensitivity of the buckling load factor in 
Equation (38) can be expressed as: 
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In summary, the adjoint method proceeds as follows: (1) 
augment two adjoint terms into the original buckling expression 
as in Equation (31); (2) calculate the adjoints such that 'σ  in 
Equation (36) and d'  in Equation (39) drop out; (3) reorder the 
sensitivity expression as in Equation (41) to calculate  . Since 
the computation process does not involve the stiffness matrix 
inverse operation, the adjoint method is more efficient.   

The last step is to compute the sensitivity of the global 
matrices in Equation (20) and Equation (41), i.e., K , 

σK  , Y'  

and Z' . If pseudo-density parameterization is used (as in SIMP 
or RAMP), then the sensitivities can be computed via their 
respective material interpolation scheme [49].  

One disadvantage of SIMP is the introduction of localized 
artificial buckling modes in low pseudo-density regions [26]. In 
[23], the stress stiffness matrix associated with low density 
elements was completely neglected during stress stiffness matrix 
calculation. In [50], a differentiable version of interpolation 
schemes was proposed where the lower bound of pseudo-density 
was carefully selected to avoid artificial modes.   

In this paper, the sensitivities are computed by evaluating the 
discrete topological sensitivity at the center of each element, thus 
avoiding the challenges with low density elements. In other 
words, the sensitivities are defined as follows [51]: 

      eK K   (42) 

 '     Y DB   (43) 

 '     Z D   (44) 



 

It should be noted that the buckling topological sensitivity 
field in Equation (41) is non-monotonic, i.e., the sensitivity can 
be either positive or negative during optimization. This is unlike 
compliance sensitivity that is always monotonic. As pointed out 
in [52], non-monotonic behavior can pose challenges for 
traditional optimization algorithms. However, methods such as 
globally convergent version of MMA (GCMMA) and gradient-
based MMA (GBMMA) are designed to address such challenges. 
In this paper, we employ fixed-point iteration [53] that is proven 
to be robust for solving non-monotonic problems, as illustrated 
later through numerical experiments. 

We must emphasize that the above sensitivity analysis 
approach assumes that the buckling mode is unique. In other 
words, this paper does not address mode-switching; instead the 
focus is on thermally induced buckling; readers are referred to 
[40], [54] for a discussion on mode-switching.  

3.5 Augmented Lagrangian method 

Given the expressions for sensitivities, we now consider 
solving the topology optimization problem in Equation (1). This 
is a special case of generic constrained optimization problem: 
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A popular method for solving such constrained optimization 
method is the augmented Lagrangian method [55], where the 
constraints are absorbed into the objective function through: 
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Observe that the gradient of augmented Lagrangian is given 
by: 
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For the topology optimization problem posed in Equation (1), 
the objective is the volume, and therefore the topological 
sensitivity is given by:  

 1f     (51) 

For the constraint functions, the buckling sensitivity can be 
computed by Equation (20) and (41) while the sensitivity for 
compliance can be found in [51].  

In the augmented Lagrangian method, the Lagrangian 
multipliers and penalty parameters in Equation (47) are 
initialized as follows: 

 0 1
i

   , 
0 10
i

    (52)

Then the augmented Lagrangian is minimized using, for example, 
conjugate gradient method. In every iteration, the multipliers are 
updated as follows: 

 1 ˆmax{ ( ),0}, 1,2,3,...,k k k

i i i i
g i m     x   (53) 

where the ˆkx is the local minimum at the current k iteration. The 
penalty parameters are updated via: 
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  (54) 

where 0 1   and 0 ; typically, 0.25  and 10  [55]. 

3.6 Proposed Method  

Piecing it all together, the proposed method for thermo-
elastic topology optimization (TO) combines the topological 
sensitivities and the augmented Lagrangian method; the 
algorithm proceeds as follows: 

1. The optimization starts at a volume fraction of 1.0, i.e., the 

‘current volume fraction’ v is set to 1.0, and the initial 

‘volume decrement’ v  is set to 0.025. The final topology 

is relatively insensitive to the initial step-size; this has been 

explored, for example, in [56]. The Lagrangian multipliers 

and parameters are initialized per Equation (52). 

2. The linear static thermo-structural FEA problem in Equation 

(3) is solved and the stresses are extracted at the center of 

each element via Equation (8).  

3. The linear buckling Eigen-value problem in Equation (10) is 

then solved by using the thermal stress calculated from Step-

2. The buckling topological sensitivity field is computed at 

the center of each element by either the direct method per 

Equation (20), or the adjoint method per Equation (41).  

4. Using the augmented Lagrangian formulation, the 

sensitivity fields of the objective function and constraints are 

combined using Equation (49). 

5. The augmented Lagrangian is then minimized. If the 

topology converges, the optimization moves to the next step, 

else the volume decrement is reduced by half, and the 

optimization returns to Step-2.  

6. If the current volume fraction is smaller than the target 

volume fraction (
arg

v v
t et

 ), the algorithm exits. Else, the 

volume is further reduced, and the optimization returns to 

Step-2. The iterations are repeated until the final volume 

fraction is reached or any of constraints is violated. 



 

 
Figure 2: An overview of the algorithm. 

4. NUMERICAL EXPERIMENTS 

In this Section, we demonstrate the proposed method through 
numerical experiments. The default parameters are as follows: 

 A thermal load is applied by increasing the temperature 

uniformly by t  with respect to a reference temperature of 

0
t 25 Co  (the reference temperature is only relevant for 

determining the appropriate material properties). 

 Hexahedral (8-noded) elements are used for 3D finite element 
analysis. 

 All experiments were conducted using a C++ implementation 
on a Windows 10 machine, with I7-5960X, 16 GB. 

4.1 Benchmark example 

The first experiment involves the buckling of a 3D column 
with a width of 0.05m and a length of 0.25m, which was 
previously studied in [39], and is illustrated in Figure 3. The 
material is assumed to be steel, i.e., 2 11 PaE e , 0.3   and 

o1.1 5 / Ce   . As illustrated in Figure 3a, the structure is 
clamped at the bottom and a compressive load of 1.0 5NF e  is 
applied at the center of the top edge; the structure is also subject 
to a homogeneous temperature elevation ot 150 C  .  Note that 
the 3D column will buckle out of plane as illustrated in Figure 3c.  

 
Figure 3: (a) A thin column structure with a thickness of 0.01m, 

(b) CAD model, and (c) buckling mode. 

In this example, the objective is to minimize the volume 
fraction, while thermo-elastic compliance and thermal buckling 
load serve as constraints. Specifically, we search for the lightest 
design whose final compliance is no larger than 2.5 times its 
initial compliance, while the final buckling load factor is greater 
than or equal to 60% of its initial value. Formally, this can be 
expressed as: 
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| |
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0.6

subject to
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Min
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st th

Kd = f + f

  (55) 

4.1.1 Direct versus Adjoint  

First, in order to compare the efficiency of direct and adjoint 
methods, we consider several coarse meshes, and compare the 
computational costs. The results are summarized in Figure 4. 
Observe that the proposed adjoint method is significantly faster 
than direct method, for reasons explained earlier. For large-scale 
problems, the direct method becomes impractical and will not be 
considered for the remainder of the paper. 

 
Figure 4: Comparison of computational time of direct and 

adjoint methods.  
4.1.2 Importance of buckling and thermal load 

Next, with the objective of studying the impact of temperature 
elevation and buckling constraint on topology optimization, we 
consider the problem in  Figure 3 under three different scenarios: 
(a) where buckling constraint and thermal load are neglected (i.e., 
only compliance constraint is considered), (b) buckling 
constraint is neglected but thermal load is included in the 
compliance computation, and finally (c) where both buckling 
constraint and thermal load are included.  

In this experiment, we use 30,000 elements (i.e., 104,832 
degrees of freedom (DOF)) to discretize the design domain. The 
adjoint method is used due to its efficiency. The resulting 
topologies for the three scenarios are illustrated in Figure 5(a), 
Figure 5(b) and Figure 5(c), respectively. The impact of thermal 
load and buckling constraint are clearly observable. The 
observed difference in final topologies sheds light on the 



 

significance of including thermal load in buckling constrained 
optimization. The impact of thermal load can be understood from 
Equation (4) where inclusion of the design dependent thermal 
load changes both the stress distribution and the geometric 
stiffness matrix. In other words, thermal effects often lead to 
increased compressive loads and buckling, thereby affecting the 
final topology.   

As expected, with additional constraints, the optimization 
problem terminates at a higher volume fraction (see Table 1). 

   
Figure 5: (a) compliance constrained elastic; (b) compliance 

constrained thermo-elastic; (c) buckling and compliance 
constrained thermo-elastic.  

The final volume fractions and constraints are summarized in 
Table 1 where the active constraints are emphasized with a ‘box’. 
It is noted that compared to case (b), a lower volume fraction is 
reached in case (c) despite the additional thermal effects. One 
plausible reason is that, the thermal sensitivities are non-
monotonic [57]. 

Table 1: Constraints and results for problem in Figure 5. 
Topology Initial 

Constraints 
Final 

Constraints 
Volume & 
time (sec) 

Figure 5(a) 02.5J J  
02.50J J  v=0.33

T=67.32
 

Figure 5(b) 0

0

2.5

0.6

J J

P P




 0

0

1.48

0.60

J J

P P




 

v=0.59

T=145.68
 

Figure 5(c) 0

0

o

2.5

0.6

t 150 C

J J

P P





 

 
0

0

o

2.50

0.91

t 150 C

J J

P P





 

 

v=0.57

T=197.03
 

For the specific case of Figure 5(c), the iteration history with 
evolving topologies are illustrated in Figure 6 where the values 
of the compliance and buckling load factor are scaled with 
respect to the initial values at volume fraction of 1.0. Observe 
that as the volume fraction decreases, the compliance 
monotonously increases, while the buckling load factor generally 
decreases. The non-monotonic nature of buckling curve in Figure 
6 was discussed earlier in Equation (23) and Equation (41).  

 
Figure 6: Iteration history for the topology in Figure 5(c). 

4.1.3 Mesh independence 

In this section, we study the effect of mesh size on the 
topology optimization results. For the case study (c) of Figure 5, 
we use various mesh sizes to discretize the 3D column.  

The mesh sizes vary from 10,000 to 40,000 elements. The 
classic radial filtering technique [17] is used for smoothing 
topological sensitivity fields. The final topologies and 
corresponding volume fractions are illustrated in Figure 7 and 
Table 2. As one can observe, neither the final topologies nor the 
volume fractions are strongly dependent on the mesh size.    

 
Figure 7: Final topologies of different mesh sizes for case study 

of Figure 5(c). 
Table 2:Final volume fractions for mesh independence study. 

Mesh 
densities 

Volume 
fraction 

Final 
topologies 

10,000 0.58 Figure 7(a) 

20,000 0.58 Figure 7(b) 

30,000 0.57 Figure 7(c) 

40,000 0.58 Figure 7(d) 

4.2 Industrial application: airplane wing rib structure 

The purpose of this experiment is to demonstrate the 
robustness of the proposed adjoint method for optimizing an 
airplane wing rib structure. In wing structures, to maintain wing 
contours in chord-wise direction, and to shorten the length of 
longitudinal wing stringers, ribs are used as internal supporting 
units as shown in Figure 8 [58]. 



 

 
Figure 8: Wing rib structures with lower skin removed [58].  
The rib structure consists of three distinct sections as 

illustrated in Figure 9: the leading edge portion, the wing box 
portion and trailing edge. In the leading edge, lightening holes 
are often introduced for mass reduction and accessibility of 
wiring and pipe lines. Horizontal stiffeners are also used to 
prevent buckling. In the wing box portion, horizontal and vertical 
beads are used both to stiffen the structure and to prevent 
buckling. Trusses are heavily used in trailing edge portion. The 
rib can be welded, riveted or glutted onto wing skins. The 
assembly configuration can easily carry heat from hot skin 
(shown in Figure 1) to the rib structures, and the induced thermal 
stress may lead to buckling.  

 
Figure 9: Wing rib construction [58]. 

Lightening holes and stiffening beads are often designed 
based on experience, and may not be optimal. In this section, the 
proposed thermo-elastic topology optimization method is used 
for optimizing both the leading-edge portion and wing-box 
portion. 

4.2.1 Leading Edge Optimization  

During flight, the wing ribs are subject to three types of loads: 
(a) aerodynamic lift and drag forces, (b) concentrated forces from 
its connection with landing gears and fuselage, and (c) 
gravitational body force [58]. In this experiment, only the 
dominating aerodynamic forces are considered for simplicity. 
With speed up to 24 Mach, the lift and drag pressure on a 
supersonic aircraft (e.g. space shuttle) can be as high as 

8 210 (N/m ) , while the surface temperature can be as high as
o1650 C . Although thermally protected [59] the ribs underneath 

the skin can still reach o o170 C 270 C [59]. 

As shown in Figure 10, the leading edge is assumed to be 
fixed at the right edge, and loaded with a drag pressure of 
146MPa  on the top edge and a lift pressure of 430MPa  at the 
bottom. The entire structure is subject to an increase in 

temperature of ot 270 C  . The material is assumed to be 

titanium alloy [60] with an elastic modulus of 111 GPaE  , 
Poisson's ratio of 0.33   and thermal expansion coefficient of 

o6.0 6 / Ce   .  

For FEA, 294,670 hexahedral elements are used to discretize 
the design domain, resulting in 972,192 DOF. The optimization 
problem is as follows:  
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o

| |

1.5

0.4

subject to

t 270 C

D
Min

J J

P P








 
st th

Kd = f + f

  (56) 

 
Figure 10: Leading-edge with a thickness of 0.1m, and applied 

boundary conditions (units are in meters). 
In words, the objective is to find the optimal topology with 

the minimal volume and its compliance is no more than 1.5 times 
the initial compliance, and its buckling load factor is no less than 
40% of original value.  

To illustrate the impact of thermal load, we also solve the 
above problem by neglecting the temperature increase. The 
resulting topologies for the two scenarios are illustrated in Figure 
11. It can be observed that the topologies are similar, but with the 
thermal load, the optimization terminates at a higher volume 
fraction. 

 
(a) Final volume fraction of 0.52, with buckling constraint 

but no thermal load. 

 
(b) Final volume fraction of 0.7, with buckling constraint 

and thermal load. 

Figure 11: Optimal designs for the rib leading-edge portion 
The numerical results are summarized in Table 3.  

Table 3: Constraints and results for problem in Figure 10. 



 

Topology Initial 
Constraints 

Final 
Constraints 

Volume & 
time (min) 

Figure 11(a) 0

0

1.5

0.4

J J

P P




 0

0

1.44

0.4

J J

P P




 

v=0.52

T=42
 

Figure 11(b) 0

0

o

1.5

0.4

t 270 C

J J

P P





 

 
0

0

o

1.17

0.4

t 270 C

J J

P P





 

 

v=0.70

T=32
 

4.2.1 Wing-Box Optimization  

Next, we consider optimization of the wing-box portion 
illustrated in Figure 12 where both the left and right ends are 

fixed, a lift pressure of 430MPa  is applied at the bottom, and a 
shear drag pressure of 146MPa  is exerted on the top edge. For 
FEA, 308,480 finite elements are used to discretize the design 
domain, leading to 1,022,328 DOF. The temperature rise is 

assumed to be ot 170 C  . The problem is posed as:  

0

0

o

| |

3.5

0.5

subject to

t 170 C

D
Min

J J

P P








 
st th

Kd = f + f

      (57) 

 
Figure 12: Rib wing-box portion with a thickness of 0.1 m, and 

applied FEA boundary conditions. 
The resulting topologies for the two scenarios (without and 

with thermal load) are shown in Figure 13. The results are 
summarized in Table 3. While both the buckling-compliance 
constrained problem (in Figure 13 (a)) and thermo-elastic 
optimization (in Figure 13 (b)) terminate due to buckling 
constraint, their optimized topologies have visibly different. 

 
(a) With buckling constraint but no thermal load. 

 
(b) With buckling constraint and thermal load. 

Figure 13: Optimal designs for the wing box portion 
Table 4: Constraints and results for problem in Figure 13 

Topology Initial 
Constraints 

Final 
 Constraints 

Volume & 
time (min) 

Figure 13(a) 0

0

3.5

0.5

J J

P P




 0

0

2.19

0.5

J J

P P




 

v=0.53

T=63
 

Figure 13(b) 0

0

o

3.5

0.5

t 170 C

J J

P P





 

 
0

0

o

2.32

0.5

t 170 C

J J

P P





 

 

v=0.51

T=71
 

It can be seen the optimized designs (in Figure 11 and Figure 
13) are non-trivial and quite different from the traditional design 
(in Figure 9). By employing the proposed topology optimization 
method, the rib structure can be lightened by nearly 40% with a 
moderate compromise in stiffness and buckling resistance.  

5. CONCLUSIONS 

The main contribution of the paper is a new method for 
buckling constrained thermo-elastic topology optimization. Two 
different formulations were presented and compared. Both 
formulations exploit the concept of topological sensitivity; thus 
material parameterization is not required. As the numerical 
experiments reveal (see Figure 5), the impact of thermal load on 
the final topologies can be significant for certain problems.  

This paper is limited to linear buckling analysis, and the  
structure stiffness matrix was assumed to remain constant [61]. 
Although linear analysis is sufficient for simple thin plates and 
flat structures, non-linearity has to be considered in many 
situations where structures undergo significant pre-buckling 
rotations. A second limitation is that mode-switching [40] was 
neglected in this paper, since the primary focus on including 
thermal-effects in buckling constrained topology optimization. 
We are currently addressing mode-switching within the context 
of thermally induced buckling. 
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