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Abstract

There are many automatic quadrilateral mesh generators that can produce high quality mesh with low distortion. However, they
typically generate a large number of singularities that could be detrimental to downstream applications. This paper introduces
Minimum Singularity Templates (MST) to reduce the number of singularities in an existing pure quad mesh. These templates are
easy to encode with high-level grammar rules for complete automation, or interactive control. The MST exploits two important
properties of quadrilateral meshes: (1) every submesh has even number of quad edges on its boundary, and (2) every submesh
with 3, 4 or 5 topological convex corners on its boundary has at most two interior singularities. The MST (1) does not change
the boundary edges of the patch, (2) avoids corner picking on a patch and solving NP hard internal matching algorithm to select
divisions, (3) is extremely fast with time complexity of O(1) in template creation, and (4) has low memory footprint and is robust.
To illustrate the concepts, we consider quadrilateral meshes generated using Abaqus, Gmsh, and Cubit, and reduce the singularities
within these meshes.
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1. Introduction

There are many applications especially in non-linear structural mechanics, higher order spectral methods, and
texture mapping which are sensitive to the directions, curvatures, and features on the geometric models. In such
applications, an all-quadrilateral and all-hexahedral mesh is often preferred over a triangle mesh. In linear elastic
simulations, simplicial meshes (triangle and tetrahedral) can exhibit locking phenomenon [3]; therefore non-simplicial
meshes (quads and hex) are preferred. Quadrilateral meshes are also de facto standard representation of geometric
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models used in animation for game and film production, since these meshes allow cage structures for Calmull-Clark
subdivision, which are easier to retopologize compared to triangle meshes [9].

An ideal quadrilateral mesh is characterized by regular vertex distribution. An internal vertex is considered regular
if it has four incident edges, otherwise it is a singular (or irregular) node. The famous Gauss-Bonnet theorem states
that all surfaces with positive genus must have singular nodes. When singularities are present in a mesh, they lead
to (1) numerical instability in CFD applications [24], (2) wrinkles in subdivision surfaces [13], (3) irrecoverable
element inversions near concave boundaries, (4) helical patterns [4], (5) produce visible seams in texture maps, and
(6) breakdown of structured patterns on manifolds. However, singularities are essential in controlling distortions near
bifurcations, protrusions, cavities etc. and in abrupt shape transitions. Therefore, the major challenges in producing
high quality quad and hex mesh generators are usually related to minimization and placement of singularities.

Recently many provably robust and efficient algorithms for automatic generation of quad meshes have been pro-
posed. Gmsh [11] is an open source software, whereas Cubit [1] (and its many variants) are available in commercial
products. All such automatic quadrilateral mesh generators produce high quality mesh with respect to quality criteria
such as low distortion, good orientation, semantic alignment, size control etc, but they may have significant number
of singularities. For example, in Figure 1, quadrilateral meshes obtained using Gmsh software have far too many
singularities sprinkled over the mesh.

Fig. 1: Singularities over quad meshes generated using Gmsh software [11].

Further, unlike simplicial meshes, quad and hex meshes are inherently global in nature which can be easily under-
stood by their dual representations [2]. A single modification to their topology can have a domino effect in that a large
number of elements may have to undergo modifications to keep the mesh consistent. The non-localness compounds
difficulties in the automation of quad mesh generation and editing as various quality criteria have non-linear depen-
dencies which can be extremely hard to encode and solve. Furthermore, it is also impossible to refine, coarsen or edit
a quad mesh with local operations as they create additional singularities [21]. For all these reasons, quad and hex
meshing problems are often formulated as global optimization problems. Unfortunately, these optimizations are not
only expensive, but also their parametric tweaking is non-intuitive. There is no direct intuitive connection between
the user constraints and the resulting mesh topology

To address these issues, this paper describes a simple and robust method to reduce singularities in a given quad
mesh. The main idea is to replace sub-meshes containing large number of singularities with Minimum Singularity
Templates. This process is applied repeatedly while maintaining desired geometric quality.

2. Related Work

Singularity control in a quad or hex mesh can be performed either during the mesh generation process or as a
post-processing step. In the following we give a summary of some of the important work.
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• Ab-initio methods : The Q-Morph algorithm [19] transforms a given triangle mesh into a quadrilateral mesh
using an advancing front method. In this approach, quadrilaterals are formed using existing edges in the triangle
mesh, by inserting additional nodes, or by performing local transformations to the triangles. The final mesh
quality is improved by topological clean-up and local smoothing operations.
Spectral methods [10,15] provide a novel approach for quadrangulating a manifold polygonal mesh using Lapla-
cian eigenfunctions which are the natural harmonics of the surface. The surface Morse functions distribute their
extrema evenly across a mesh, which connect via gradient flow into a quadrangular base mesh (known as a
Morse-Smale Complex). An iterative relaxation algorithm refines this initial complex to produce a globally
smooth parametrization of the surface. From this, well-shaped quadrilateral mesh with very few singularities
are generated. Although very elegant, this approach poses many challenges: (1) The quality of mesh depends
on an appropriate Morse function which is often heuristic and a poor choice may lead to huge numbers of sin-
gular nodes, (2) computing first few (about 40) eigenvectors is very expensive and sometimes impractical for a
large mesh, and (3) tracing the curves from maxima to minima via saddle points may face geometric robustness
issues [12].

• Quad re-meshing Quad re-meshing approaches attempt to improve an existing quad mesh to satisfy user spec-
ified properties. Many successful techniques are based on parametrization which can automatically find sin-
gularity positions by smoothing the principal curvature directions [5,18]. Global parametrization approaches
directly generate all-quad meshes using a base-complex, but designing a base-complex is non-trivial, which is
either semi-automated or based on the Morse theory.
Kalberer et al.[16] generate a high quality quadrilateral mesh using global parametrization which is guided by a
user-defined frame field (often the principal curvature directions). These frame fields simplify to vector fields on
the covering spaces, so that the problem of parametrization with frame fields reduces to the problem of finding
a proper integrable vector field on the covering surface. Similarly, Bommes et al. [4] formulated the quadran-
gulation problem as two step process (cross field generation and global parametrization), both formulated as a
mixed-integer problems. This scheme allows placement of singularities at geometrically meaningful locations,
and produces meshes with favourable orientation and alignment properties.
Hormann et al. [14] presented an algorithm that converts an unstructured triangle mesh with boundaries into a
regular quadrilateral mesh using global parametrization that minimizes geometric distortion.

• Quad mesh decimation Decimation approaches attempt to simplify a given mesh complex by using local or
global transformations. In the area of topological clean-up operations, many methods have been presented.
Canann [8] and Kinney [17] present very large numbers of operations (in 1000s) usually applied using an
isomorphism approach. In contrast to those, Bunin [7] presents a very elegant technique for removing defect
vertices based on patch replacement, whose results are better than those of the isomorphism approach while also
being vastly simpler to implement. Peng etc. [21] provided connectivity editing operations for quadrilateral
meshes explicitly control the location, orientation, type, and number of the irregular vertices in the mesh while
preserving sharp edges by three fundamental operations to move and re-orient a pair of irregular vertices. Their
operations are based on very low level atomic operations, therefore, many operations may be needed to produce
the desired mesh topology.

3. Synopsis and Contributions

Given a quad mesh such as the one in Figure 2a, this paper describes a simple and robust technique to dramatically
reduce the number of singularities. To begin with, the user provides a rule for ranking singularities within the mesh
(example: distance of a singularity from the boundary). Thereafter, these singularities are sorted and incrementally
removed as follows. Since it is not possible to remove a single or even a pair of singularities from a mesh [21], at
least three singularities are needed to participate in the removal process. This leads to the idea of exploiting patch,
which is a well known structure in mesh generation in various contexts. In our context, a patch is a subset of the
mesh containing at least three singularities. Starting with three neighbouring singularities, additional elements are
incrementally added to the patch, while maintaining certain desirable properties of the patch (to be described later
on). One such property is that the boundary of the patch must contain at least 3 topologically convex corners [7];
Figure 2b illustrates a patch with 4 such corners. Once such a patch has been created, the elements within this patch
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are replaced by a new set of elements with fewer singularities, using the Minimum Singularity Template (MST). A
smoothing step is then carried out to improve the geometric quality. The process is then repeated, starting from three
new singularities, until no new patches can be constructed, resulting in the quad mesh shown in Figure 2c. While the
entire process can be automated, it is also amenable to user interactions in that specific singularities can be identified
and removed at any stage. Each of the above steps is described in detail in the remainder of the paper.

(a) Input quad mesh (b) Patch replacement (c) Final mesh

Fig. 2: A brief overview of the singularity removal process

4. Basic Definitions and Propositions

Definition 1. The valence of a vertex vi is the number of edges incident on it. A vertex with ”n” valence is denoted by
Vn. An internal vertex with valence 4 is considered regular, otherwise it is an irregular or singular vertex. An internal
vertex with valence 2 is a called doublet.

In this paper, we consider only V3 and V5 singular nodes as all other high valence nodes can be converted into
V3 andV5 nodes using standard atomic face open or face close operation [2].

Definition 2. A patch is a sub-mesh with disc topology.

Definition 3. The topological outer angle (TOA) [7] of a vertex on the boundary of a patch is defined as:

TOA(V) = # faces incident on the vertex that lie outside the patch − 2 (1)

Definition 4. A vertex on the boundary of a patch is a convex corner if its TOA is greater than or equal 1.

Figure 3 illustrates three patches with 3, 4 and 5 convex corners. Observe that these corners naturally divide the
boundary of the patch into 3, 4 and 5 segments, respectively.

(a) A 3-sided patch (b) A 4-sided patch (c) A 5-sided patch

Fig. 3: Convex patches containing singularities

Proposition 1. The number of quad edges on the boundary of a patch is even.
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Proof. For a quad meshM, which is locally homeomorphic to an open subset of R2, the number of faces and edges
must satisfy 4F = 2Ei + Eb, where Ei is the number of internal edges shared by two faces, and Eb is the boundary
edges shared by one face. This equation implies that Eb must be even.

The above proposition simply confirms the existence of a quad mesh in a patch. Our task is to provide a constructive
algorithm to create an alternate quadrangulation with fewer singularities.

Proposition 2. Any quadrangulation of a patch with k convex corners will have at least |k − 4| interior singularities
[22].

Thus, for example, there are 3 interior singularities in Figure 3a, the above proposition asserts that, all quadrangu-
lation of the patch must contain at least one singularity.

5. Patch construction

The first step in the proposed algorithm is to construct patches that satisfy certain desired properties. Towards this
end, the user specifies a criterion to rank the singularities in the domain. After that patch identification process starts
as follows:

1. Pick the highest ranking singularity which becomes the seed for the patch expansion.
2. Grow the patch around the seed. Bunin [7] used breadth first search (BFS) to expand the patch. Here we improve

Bunin’s method using one heuristic: We know that we need at least three singularities in a patch, so instead of
searching in all directions (as in classical BFS), we search for one more singularity which is topological closest
to the seed using Dijkstra’s shortest path algorithm. All the nodes on the shortest path become seeds for the
expansion to identify more singularities. This simple change creates a compact and thinner patch as shown in
Figure 4.

3. The patch is expanded in a breadth-first order, until there are atleast three singularities in the patch.
4. The boundary nodes of the patch are identified and their topological angles are computed. If there are more than

five convex corners, we pick only five of them.
5. If convex corners are not found, the entire patch is expanded by one layer. If the expansion reaches boundary,

further expansion is halted.
6. If the expansion reaches boundary and no corners are found based on topological angle criterion, then we choose

the corners from the uniformly distributed boundary nodes of the patch (In some cases, this may create doublets
at the corners, which must be removed immediately after remeshing the patch).

(a) Breadth first Patch search (b) A compact patch using shortest initial path

Fig. 4: Patch searching
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6. Quadrangulation with Minimum Singularities

6.1. One singularity remeshing

Obtaining the least number of singularities in a patch is a constrained satisfying linear problem [7,25], for which
a solution exists only for patches which have specific number of edges on its sides. Whereas for a quad patch, zero
singularity is obtained when number of edges on opposite sides are equal, for other polygonal patches, we need to
solve a linear system derived from Interval matching method.

a0 b0

a1

b1a2

b2

(a) Triangle patch

a0 b0

a1

b1

a2

b2a3

b3

a4

b4

(b) Pentagon patch

Fig. 5: One singularity remeshing templates.

6.1.1. Triangle patch
The interval matching for a triangle patch leads to the following system of equations [25]. If there exists an integer

solution to this system, then a triangle patch can be quadrangulated with a single V3 singularity inside the patch as
shown in Figure 5a. In this figure a0, b0, ... denote the number of quad edges on the patch segments.



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0





a0
a1
a2
b0
b1
b2


=



N0
N1
N2
0
0
0


⇐⇒

a0 + b0 = N0

a1 + b1 = N1

a2 + b2 = N2 (2)
a0 − b1 = 0
a1 − b2 = 0
a2 − b0 = 0
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6.1.2. Pentagon patch
The interval matching on a pentagon patch leads the following system of equations [25]. If there exists, an integer

solution of this system then we can quadrangulate a pentagon patch with aV5 singularity as shown in Figure 5b



1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 −1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 0 −1 0 0





a0
a1
a2
a3
a4
b0
b1
b2
b3
b4



=



N0
N1
N2
N3
N4
0
0
0
0
0



⇐⇒

a0 + b0 = N0

a1 + b1 = N1

a2 + b2 = N2

a3 + b3 = N3

a4 + b4 = N4 (3)
a0 − b3 = 0
a1 − b4 = 0
a2 − b0 = 0
a3 − b1 = 0
a4 − b2 = 0

If solving linear equations 2, 3 lead to integer values to all the ai and bi then the patch can be remeshed with only one
singularity in the interior (and vice versa). The next section addresses the quadrangulation when integer solutions do
not exist.

The inversion of these matrices are pre-calculated and sparse matrix vector multiplication is hand optimized. There-
fore, the decision of quadrangubility is trivially determined [25].

6.2. Patch reduction

Now the main objective is to find minimum number of singularities within a patch. An exhaustive search is
infeasible except for small patch sizes. Therefore, we first divide a given patch into sub-patches. One of the sub-
patches which is referred here as the Maximally Reduced Patch(MRP) has the property that it has one or more sides
with only one edge and all other sub-patches are 4-sided with perfect quadmeshes (i.e. no singularity).
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Fig. 6: Examples of patch reduction
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• Triangle Patch Reduction: Let a triangle patch be P = P(N0,N1,N2) where Nk denotes the number of quad
edges on the kth side. We rearrange the triangle so that N0 ≥ N1 ≥ N2. In the first step we divide the the patch
P0 into P1 and P2 as follows (Figure 6a):

m1 = min(N0,N1) − 1
P0(N0,N1,N2) = P1(m1,N2,m1,N2) + P2(N0 − m1, 1,N2) (4)

The sub-patch P1 leads to a perfect quad mesh, and the second side of the subpatch P2 has only one edge. We
can further reduce the subpatch P2 into P3 and P4 subpatches as follows (Figure 6a);

m2 = min(N0 − m1,N2) − 1
P2(N0 − m1, 1,N2) = P3(m2, 1,m2, 1) + P4(N0 − m1 − m2, 1, 1) (5)

With the second decomposition the subpatch P3 will lead to a perfect quadmesh and P4 has only edge on its
second and third side. This forms the MRP for a given triangular P0 patch. With these decompositions, finding
the minimum number of singularities in the P0 patch is reduced to finding minimum number of singularities in
the sub-patch P4. Quadrangubility of the sub-patch P4 is guaranteed by the following proposition.

Proposition 3. The number of edges on the boundary of the subpatch P4 is even.

Proof : Observe that the input patch P0 has even number of edges.

N0 + N1 + N2 = 2N (6)

With the first decomposition
f irst side︷               ︸︸               ︷

{(N0 − m1) + m1}+

second side︷   ︸︸   ︷
{m1 + 1} +{N2} = 2N

Thus for the patch P2
f irst side︷     ︸︸     ︷
{N0 − m1}+

second side︷︸︸︷
{1} +{N2} = 2N − 2m1 = 2N′

Thus patch P2 also has an even number of edges. Repeating this argument once more, we can show that P4 also
has an even number of edges, and therefore it can be quadrangulated. The precise nature of this quadrangulation
is discussed in the next section.

• Quad Patch Reduction Let a quad patch be P = P(N0,N1,N2,N3). We arrange the patch such that N0 ≥ N2 and
N1 ≥ N3. We decompose the patch in two directions in two steps as follows(Figure 6b). The first decomposition
is done with a vertical cut and we obtain two subpatches P1 and P2. While P1 contains perfect quadmesh, the
patch P2 has only one edge on its top side.

m1 = min(N0,N2) − 1
P0(N0,N1,N2,N3) = P1(m1,N3,m1,N3) + P2(N0 − m1,N1, 1,N3)

The second decomposition is performed with a horizontal cut on P2 and we get two subpatches P3 and P4. The
subpatch P3 contains a perfect quadmesh and the patch P4 has its left and top sides each containing one edge.
This form the MRP of the original quad patch P0.

m2 = min(N1,N3) − 1
P2(N0 − m1,N1, 1,N3) = P3(N0 − m1,m2,N0 − m1,m2) + P4(N0 − m1,N2 − m2, 1, 1) (7)

With these two decompositions, finding the minimum singularities in the original patch P0 is reduced to finding
minimum singularities in the patch P4. The quadrangubility of P4 is guaranteed as it contain the even number
of edges.
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Proposition 4. The number of edges in the quad subpatch P4 is even.

Proof : Observe that the input patch P0 has an even number of edges.

N0 + N1 + N2 + N3 = 2N (8)

With the first decomposition

f irst side︷               ︸︸               ︷
{(N0 − m1) + m1}+{N1} +

third side︷    ︸︸    ︷
{(m1 + 1}+{N3} = 2N

Thus for the patch P2
f irst side︷     ︸︸     ︷
{N0 − m1}+{N1} +

third side︷︸︸︷
{1} +N3 = 2N − 2m1 = 2N′

which is even number. Similarly, we can prove the smallest quad patch P4 will have even number of edges.
• Pentagon Patch Reduction: A pentagon can be decomposed into a quad and a triangle, or three triangles in var-

ious ways. Each triangle and quad patch can be quadrangulated with the methods described above. Therefore,
we omit any discussions for this case.

6.3. Minimum Singularity Templates

Once a patch is decomposed into subpatches, due to the property discussed above, it is easy to show that the MRP
will fall into one of the templates shown in the Figure 7 and 8. There are two templates for a triangular patch, and
three for a quadrilateral patch.

11

Fig. 7: MST for a triangle patch (a) T1 type (b) T2 Type
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Fig. 8: MST for a quad patch (a) Q1 type (b) Q2 Type (c) Q3 type

Corollary 1. A triangular patch can be quadrangulated with at most two singularities and this occurs with T2 tem-
plate. These two singularities are shown in Figure 7 with red circles.

Corollary 2. A quadrilateral patch can be quadrangulated with at most two singularities and this occurs with Q3
template. These singularities are shown in Figure 8 with the red circles.
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Corollary 3. A pentagon patch can be quadrangulated with four singularities.

Thus to summarize, given a patch with 3, 4, or 5 segments, and certain number of quad edges on each segment,
template selection is automated as follows:

1. Check if the system of equations 2 or 3 give an integer solution. If so, then the patch is quadrangulable with only
one singularity.

2. Else, if the patch is triangular, check the number of nodes in the subpatch P4. If there are three nodes on its first
side, apply T1 template, otherwise apply T2 template. With the T1 template, one singularity is introduced at the
boundary of the patch and with T2, one interior and one boundary singularity is introduced.

3. If the patch is quadrilateral:

• If the sides N1,N2,N3 all have one edge, apply Q1 patch. This template will create two singularities in the
interior of the patch.

• If the number of edges on side N0 and N1 is equal and greater than one, apply Q2 patch. This template will
create one singularity in the interior of the patch.

• If the number of edges on side N0 and N1 differ, apply patch Q2. This template will create two singularities
in the interior of the patch.

4. If the patch is pentagonal, decompose it into either quad-triangles pairs or in three triangular patches. Since there
are many ways to decompose a pentagon, we check for each decomposition for the number of singularities and
accept the one which gives the least number of singularities.

7. Patch replacement

Until now, all the steps were combinatorial and required only algebraic calculations, the final patch replacement
involves geometric considerations. The shape of a patch could be arbitrarily complex (although it is always a topo-
logical disk). Therefore the mapping from template domain to physical domain can produce large distortions and
inverted elements. The following steps are taken to replace a patch with the template mesh

1. Create a correspondence between corners of the template patch with the corners of the physical patch corners.
2. Calculate Floater’s Mean Value Coordinates for each vertex of the template mesh with respect to its corners,

therefore each vertex of the template mesh will have coordinates in n-dimensional space, where n is the number
of corners.

3. Change the coordinates of the corners of the template mesh with the coordinates of the physical patch and
calculate the new coordinates of each vertex of the template mesh.

4. Constraint the boundary nodes of the template mesh with the corresponding boundary nodes on the physical
patch (i.e. Dirichlet boundary condition).

5. Optimize the patch using Lloyds relaxation and improve the shape of quad elements, for example, using Mesquite
software [6].

6. Check for inversion of each face in the template mesh. If there is a inverted face, apply locally injective mapping
of Schueller etc [23] to obtain a fold-free mesh.

7. If all the faces have positive Jacobian, improve mesh quality using Mesquite software, replace physical patch
with the template mesh and update the mesh data structures.

8. Results

To evaluate the effectiveness of our approach, we created quad meshes using Gmsh, Cubit and commercial Abaqus
codes. These meshes are shown in Figures 9 on the left side. The resulting meshes are illustrated in Figure 9, on the
right side. The mesh qualities are evaluated with the Verdict software [20]. Various mesh quality values are presented
in the Table 1. In the table L,H indicates whether lower value or higher value is preferred.
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• In all cases, the number of quad faces remains almost constant.
• For the first example (plate with hole), there was a 92% reduction in singularities, and these singularities are al-

most symmetrical. In this case, all the mesh quality values have improved which reaffirms our initial hypothesis
that there are often more singularities in some meshes than necessary to control the maximum distortions.

• In the Dolphin case, in the sharp concave region (near the fin) excessive singularity removal increased ’oddy’
from 18 to 54. This can be significantly improved with an additional pillow-layer.

• The bird example has many concave regions, therefore only 82% singularities could be removed.
• For the 5-hole example, we could reduce only 89% singularities despite the fact that the model is geometrically

simple. The small feature lengths played an important role in keeping large number of singularities in the
domain. In this experiment, singularities are moved from the smaller circles first and then from the rest of the
region to maintain high aspect ratio near the boundaries.

Although in all the experiments, the final mesh quality is within acceptable range (as defined by the Verdict Software),
there are two ways to improve the results: (1) allow selective refinement near high aspect ratio elements, and (2) use
L∞ shape optimization methods instead of average quality improvement methods.

Square hole Dolphin Bird 5-holes
Source Abaqus Gmsh Gmsh Cubit
Faces 4250/4015 5856/5586 2399/2271 9923/10085
Singularities 156/12 (92%) 474/38(92%) 272/47 (82%) 627/70(89%)
# Iterations 17 30 20 40
Aspect Ratio (L) 1.70/1.54 2.60/3.65 2.24/3.44 1.71/3.04
Condition number (L) 1.65/1.32 3.18/5.30 3.42/3.54 1.81/1.97
Distortion (L) 0.40/0.60 0.27/0.30 0.38/0.41 0.46/0.45
MinAngle (L) 48/57 32/24 25/22 46/37
MaxAngle (H) 140/126 155/162 158/159 140/145
Oddy (L) 3.39/1.5 18.31/54 21.46/23 4.56/5.78
Scaled Jacobian (H) 0.65/0.80 0.42/0.30 0.35/0.34 0.63/0.57
Skew (L) 0.58/0.40 0.74/0.86 0.83/0.88 0.66/0.68
Stretch (L) 1.04/1.26 15.03/23.2 12.81/18.0 1.45/2.06
Taper (L) 0.47/0.30 0.88/0.56 0.64/0.73 0.43/0.39

Table 1: Mesh qualities using Verdict software: (x/y) denotes the value of input and output mesh respectively

9. Conclusions and Future work

We have presented a simple, robust, and practical algorithm to reduce singularities in a pure quad mesh using
Minimum Singularity Template. We have experimented with many models which were quad-meshed by Gmsh, Cubit,
and Abaqus. Experiments have shown that some of the high quality quad mesh generators have significant number
of removable singularities. These singularities can be removed with little impact on the mesh quality. Although
algorithm does not guarantee least number of singularities, it is still very effective in reducing singularities.

Perhaps the most important future wotk that we shall pursue is to unify various optimization methods into single
framework. This could be particularly used for singularity editing as proposed by Peng [21], and for removing the
helical structures as noticed by Bommes [4] etc.
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Fig. 9: Results: (A) Original mesh(left column) (B) Output mesh (right column)
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