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ABSTRACT 

As additive manufacturing expands into multi-material, there is 

a demand for efficient multi-material topology optimization, 

where one must simultaneously optimize the topology, and the 

distribution of various materials within the topology. 

The classic approach to multi-material optimization is to 

minimize compliance or stress while imposing two sets of 

constraints: (1) a total volume constraint, and (2) individual 

volume-fraction constraint on each of the material constituents. 

The latter can artificially restrict the design space. Instead, the 

total mass and compliance are treated as conflicting objectives, 

and the corresponding Pareto curve is traced; no additional 

constraint is imposed on the material composition.  

To trace the Pareto curve, first order element sensitivity fields 

are computed, and a two-step algorithm is proposed. The 

effectiveness of the algorithm is demonstrated through 

illustrative examples in 3D. 

Keywords Topology optimization, Multi-material structures, 

Pareto tracing, matrix-free FEA. 

1. INTRODUCTION 

Topology optimization (TO) [1], [2], [3] is exploited today to 

optimize aircraft components [4], [5], spacecraft modules [6], 

automobiles components [7], and compliant mechanisms [8]–

[11]. It strongly complements the growing field of additive 

manufacturing (AM) in that the complex designs created through 

the former can, in theory, be directly fabricated through AM. The 

optimality of the design created through TO ensures that the least 

amount of material is used, translating into reduced fabrication 

time and material cost (see Figure 1). This serves as a primary 

motivation for this paper.  

       
Figure 1: From problem specification to optimal part. 

However, there are a number of practical issues that need to be 

addressed [12]. These issues include AM-specific TO, design of 

support structures, minimum feature size, accounting for material 

de-bonding, accounting for residual stresses, etc. 

With new technological innovations in AM, new challenges arise 

in TO. For instance, AM can now support multiple materials, i.e., 

one can now control the material composition, and internal 

structural pattern with sub-millimeter precision. For example, the 

OpenFab project from MIT [13] discusses a programmable 

pipeline for synthesis of multi-material 3D printed objects. The 

key feature in this pipeline is the voxelization of the object.  

This creates a strong need for high-resolution multi-material 

topology optimization (MMTO), where one must simultaneously 

optimize the topology and the distribution of various materials 

within a given space. While MMTO has been addressed by 

researchers for over two decades now [14], the objective of this 

paper is to pursue a MMTO method that is computationally 

efficient and can be generalized to variety of objectives. 

In Section 2, recent advances in MMTO are summarized. In 

Section 3, we propose an efficient MMTO method that 

generalizes the single-material Pareto-tracing method proposed 

in [15], [16]. In Section 4, the validity of this method is confirmed 

through benchmark case-studies. Section 5 summarizes the 

contributions of this paper. 

2. LITERATURE REVIEW  

In this section we briefly review technical background on single-

material topology optimization (SMTO), and then discuss recent 

research on multi-material topology optimization (MMTO).  

2.1 Single Material Topology Optimization 

Classic SMTO problems may be posed as: 
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where: 

 

:  Objective such as compliance,stress, or volume

:  Topology to be computed

:  Domain within which the topology must lie

:  Finite element displacement vector

:  Finite element stiffness matrix
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In other words, the objective is to find the optimal design, within 

a given design space, that minimizes a specific objective and 

satisfies certain design constraints. Typical objectives include 

volume fraction, compliance, etc., while constraints include 

displacement, stress, buckling, and manufacturing constraints. A 

typical structural problem is illustrated in Figure 2, where the 

thickness of the structure is 5 units, and the load is 100 units. 
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Figure 2: Design space for a topology optimization problem. 

Various topology optimization methods such as homogenization 

[17], Solid Isotropic Material with Penalization (SIMP) [18], 

level-set [19]–[22], and evolutionary methods [23]–[25], have 

been proposed for solving such problems; please see [26], [27] 

for recent reviews.  

The key concept in SIMP is to describe the material distribution 

by a pseudo-density variable ρ  that interpolates the underlying 

material properties [24]; for example, the Young’s modulus is 

typically interpolated per element via:  

 
0

p

e e
E Eρ=  (2) 

The penalization factor p depends on the physics and dimension 

of the problem; it is typically assigned a value of ‘3’ for 3D linear 

elasticity. The pseudo-density variables are then optimized to 

reach the desired objective. For the problem posed in Figure 2, 

any of the above methods can be used for finding the optimal 

topology. Variations of this concept include node-based SIMP 

[28] and multi-resolution SIMP [29].  

2.2 Multi-Material Topology Optimization 

For multi-material topology optimization (MMTO), the problem 

posed in Equation (1) is generalized to: 
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where (also see Equation (1)): 

 
:  Topology for material ' '  to be computed

:   Number of materials
k

k

M

Ω
   

Thus the objective is to find the optimal distribution of M non-

overlapping materials, within a given design space, that 

minimizes a specific objective and satisfies certain design 

constraints.  

The MMTO problem posed in Equation (3) assumes that every 

point within the design space has a distinct material associated 

with it (or is void). This differs from functionally graded material 

optimization [30], where a mixture of base materials is allowed. 

SIMP-Based MMTO. For multiple materials, the SIMP 

approach was first extended to multiple materials in 1992 [14]. 

However, the challenges associated with assigning different 

interpolations for different materials and material properties was 

discussed in [31] where Sigmund proposed a two-material 

interpolation scheme for designing thermally and electro-

thermally driven micro actuators. An alternate material 

interpolation strategy was developed in [32] by introducing a 

peak function and exploiting optimality criteria method. 

A new SIMP method was presented in [33] for optimizing 

multiple homogeneous materials, which interpolates the stiffness 

matrix instead of interpolating the Young’s modulus. The 

validity of this method was demonstrated through 2D examples 

involving two materials. In [34], Chavez et al. implemented 

SIMP to solve a special problem of minimizing the compliance 

of concrete slabs reinforced with carbon fibers. Their approach 

relies on concrete failure criteria, and the fact that the slabs are 

simple symmetric geometries in 2D. In 2007, De Kruijf et al. 

employed SIMP to minimize both compliance and resistance to 

heat dissipation of composites. The method is in 2D and attains 

only the upper limits of Hashin-Shtrikman [35]. If the materials 

are composites, it is well-known that SIMP interpolations can 

violate Hashin-Shtrikman bounds [27]. Blasques and Stolpe 

proposed a density-based framework for minimizing compliance 

of laminated composite beam cross sections [36]. The method 

allows multi-material laminates in 2D, where the formulation is 

carried out by writing equilibrium between laminate layers, 

under the limiting assumptions that the beam is slender and has 

invariant cross sections.  

A new multi-resolution scheme for MMTO was developed in [37] 

where different levels of discretization were employed for 

representing displacement, design variables, and density. The 

method uses the alternating active phase algorithm, in which the 

original problem is decomposed into a number of sub-problems, 

where only two of the materials are active, and the problem is 

solved using the density approach.       

Level-Set and Phase-Field MMTO.  In 2003, Wang and Wang 

introduced a novel level-set approach for MMTO [38]. The 

method requires M level-sets to represent 2M distinct materials, 

and it was used to solve benchmark problems in 2D, where 

different ‘colored level-sets’ represented distinct materials.     

Later, the idea was expanded towards compliant mechanism 

design [39] and microstructures [40]. Unfortunately, as 

demonstrated in [41], these shape derivatives were 

approximations under certain assumptions. Allaire et al. 

developed the correct mathematical shape derivatives in [41] 

where the interface zone thickness is also kept constant. In order 

to remove discontinuity caused by sharp interfaces, authors of 

[42] suggested using multiple intermediate interfaces to attain 

continuity. The most challenging issues in MMTO via level-set 

are: (1) field discontinuity, and (2) thickness diffusion. The 

former is due to discontinuity in phase properties, which leads to 

discontinuous normal strain and tangential stress. The latter is 

caused by numerical diffusion in level-set process [41]. 

Wang and Zhou [43] presented the phase-field method for 

MMTO using Van der Waals–Cahn-Hilliard theory for dynamic 

phase transition. The method makes no distinction between the 

material phases and their interface.  

More recently, as an improvement over the idea proposed in [38], 

a new multi-material level-set method was proposed in [44] for 
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both shape and topology optimization. While exact sensitivity 

expression were provided, the implementation was restricted to 

2D. 

Evolutionary Methods for MMTO. Yet another family of 

topology optimization methods are the evolutionary-based 

methods. Xie and Steven, first developed evolutionary structural 

optimization (ESO) in 1992, to solve optimization problems by 

gradually removing elements with lowest value of von-Mises 

stress until the desired volume fraction is reached [45]. In 1996, 

stiffness-constrained optimization problems were solved using 

ESO, where the sensitivity number of each element was 

calculated using strain energy [46].  

Querin et al. expanded the “hard-killing” ESO to BESO, which 

allowed the discarded elements to be re-added under certain 

circumstances [47]. An AESO approach was introduced in [48]  

which instead of discarding elements from a larger-than-

optimum design, added elements to a minimum base design. In 

AESO, unlike ESO one could use maximum criterion directly in 

evolution process. Liu et al. developed a GESO algorithm, 

wherein a chromosome array was assigned to each element, and 

an element was removed only if all values of genes were zero 

[49]. The salient features of the ESO family are that they do not 

introduce intermediate elements and do not compute gradients. 

Thus, most of these methods fall into the category of non-

gradient topology optimization (NGTO) methods, whose 

deficiencies are addressed in [50].  

Element Sensitivity Methods for MMTO. In 2010, Ramani 

developed an algorithm for compliance minimization for 

multiple materials [51]. The algorithm starts with computing and 

ranking element sensitivities, where for each element, there are 

generally two values defined as sensitivity to change from 

current state to an immediate step, both better and worse 

performance. Then material distribution undergoes a repeated 

cycle between feasible and infeasible solutions until it converges. 

Ramani extended his work in 2011 to stress-constrained multi-

material topology optimization [52].  

The present work once again uses the concept of element 

sensitivity, as in [51]. However: 

1. The connection between element sensitivity and well-known 

topological sensitivity is illustrated in this paper. Further, the 

element sensitivity is generalized to arbitrary quantities of 

interest. 

2. In [51], the intermediate designs may be structurally 

disconnected. Therefore, as the author states, it is critical that 

void elements be assigned a low value of Young’s modulus. 

In the present work, by construction, every intermediate 

design is connected, and void elements can be suppressed 

without resulting in singularity. This leads to better 

condition number, and faster convergence. 

3. Displacement constraint are handled in [51] by switching 

between ‘infeasible’ and ‘feasible’ designs. In this paper, all 

intermediate designs satisfy the displacement constraint.  

Thus, the designer has the option of choosing from a 

multitude of Pareto-optimal designs, as the numerical 

experiment later illustrates. 

4. The material changes in [51] are restricted; this may lead to 

sub-optimal designs; this is illustrated later through 

numerical experiments.  

3. PROPOSED STRATEGY  

In this paper we generalize the single-material Pareto tracing 

method of topology optimization proposed in [15], [16] to 

multiple materials.  

3.1 Pareto Method for SMTO 

Consider the following single-material topology optimization 

problem, where the goal is to find the best possible topology with 

respect to compliance (J ) and volume (or weight): 
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Using the concept of topological sensitivity [53], a topological 

level set method was developed in  [15], [16] for SMTO that 

traces the Pareto curve governing compliance and volume 

fractions. The Pareto-optimal designs do not exhibit ‘islands’, 

which results in better conditioned stiffness matrices, and 

consequently faster iterative convergence. Figure 3 illustrates the 

Pareto curve, and computed topologies, for the problem in Figure 

2. The properties of material A is given in Table 1. Given the 

computational advantages and robustness of this method for 

single material optimization (see[16], [54], [55] for supportive 

evidence), the objective of this paper is to generalize this to 

multiple materials. 

 

Figure 3: The Pareto-optimal curve and topologies for a single 

material (A). 

3.2 Topological vs. Element Sensitivities 

Towards this end, one can consider generalizing the concept of 

topological sensitivity to both anisotropic and multiple materials. 

Anisotropic material was first addressed in [56], and composite 

material was addressed in [57]. However, computing closed-

form expressions for topological sensitivity for arbitrary material 

distribution is non-trivial. We therefore consider an alternate and 

well known concept of “element sensitivity” that is easy to 
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compute for arbitrary material distributions, and easy to 

generalize to arbitrary quantities of interest.  

Specifically, consider the 2D equivalent of the L-Bracket 

problem posed in Figure 2. The topological sensitivity is defined 

as the first order change in compliance when an infinitesimal hole 

is inserted, leading to the expression [15]: 
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This field is illustrated in Figure 4a, where the stresses and strains 

are computed at the center of each element.  

On the other hand, the element sensitivity is the expected change 

in compliance when an element is deleted from the mesh. This, 

one can show is given by (see [3]): 
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e e e
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where eu is the element displacement and eK is the element 

stiffness matrix. The element sensitivity field is illustrated in 

Figure 4b. Observe the similarities between the two fields in 

Figure 4; the scaling is not important since the optimization 

process is scale independent. Thus the element sensitivity field 

can also be treated as a level set. 

The similarity between the two fields is not surprising since they 

fundamentally capture the expected change in a compliance 

when material is deleted. There are, of course, several differences 

between the two. Perhaps, the most important one is that the 

element sensitivity is easy to generalize to arbitrary materials, 

and quantities of interest (see Appendix A), while the former is a 

lot harder.  

 

(a) Plot of 2D topological sensitivity field. 

 

(b) Plot of 2D element sensitivity field. 

Figure 4: Topological and element sensitivity fields for the 

single-material 2D L-Bracket problem. 

For multiple materials, the element sensitivity is generalized in 

Section 3.4 as the expected change in a quantity of interest when 

the underlying material is changed (rather than deleted). 

Formally, this can be interpreted as a multi-colored level-set [38], 

and can be used as a basis for continuous optimization.  

However, for computational efficiency, we propose and justify a 

simple approximation for exploiting the multi-colored element-

sensitivities. Several experiments illustrate the effectiveness of 

this approximation.  

3.3 Formulation 

The classic approach to MMTO is to minimize compliance 

subject to two sets of constraints: (1) a total volume constraint, 

and (2) individual volume fraction constraint on each of the 

material constituents. The latter can artificially restrict the design 

space. More recently, researchers have explored mass constraint 

formulations [51], [58]. 

Here, we consider any pair of conflicting objectives (for example, 

mass and compliance), and the corresponding Pareto curve is 

traced. No additional constraint is imposed on the material 

composition, providing additional freedom during optimization.   

The first objective is generically referred to as cost (C); this 

includes quantities such as total mass or total price. The second 

objective is referred to as inefficiency (I), i.e., the inverse of 

performance; this captures quantities such as compliance, p-

norm stress, etc. The goal is to minimize both cost and 

inefficiency. In other words, a two-objective multi-material 

problem is posed as: 
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For example, the compliance (J ) versus weight (W ) problem is: 
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Our objective will be to trace the Pareto curve involving these 

two quantities with cost (C) on the x axis and inefficiency (I) on 

the y axis. The proposed algorithm will start with a topology with 

the highest cost; then: (1) the cost function will be reduced by a 

small decrement (sub-algorithm 1), followed by (2) a reduction 

in inefficiency while keeping cost a constant (sub-algorithm 2); 

these two steps are illustrated in Figure 5. By repeating these two 

steps, the Pareto curve is traced and numerous topologies that lie 

on the curve are computed in an efficient manner. 

 

Figure 5: Tracing the Pareto curve, and the two sub-steps. 

3.4 Terminology 

In this section, we introduce the necessary terminology before 

describing the algorithm in detail. We assume the underlying 
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design has been discretized using finite elements, and each 

element can be associated with a material of choice. 

We will now establish the concept behind the two steps 

illustrated in Figure 5. Suppose we have a finite element with 

material k within the design. We will now consider a hypothetical 

swapping of the underlying material k to material m. Observe that 

the change in compliance (I is used here to denote inefficiency) 

is given by the first-order element sensitivity (see Appendix A): 

 k m T k T m

e e e e e e e
I u K u u K u→ = −�  (9) 

As a special case, if the element is deleted, i.e., replaced with 

void, we have: 

 k T k

e e e e
I u K u→∅ =�  (10) 

Similarly, as a special case of Equation (9), if a new element is 

inserted (in place of a void): 

 m T m

e e e e
I u K u∅→ = −�  (11) 

Note that the above equation is consistent with the sensitivity 

expressions used in SIMP for compliance [3]; also see [59]. 

The element sensitivity in Equation (9) can obviously be 

generalized to other quantities of interest. Specifically, for any 

quantity of interest Q, the first-order sensitivity is given by (see 

Appendix A): 

 k m T k T m

e e e e e e e
Q K u K uλ λ→ = − +�  (12) 

where λ   is the adjoint field [60] associated with the quantity of 

interest. Thus, there is no fundamental restriction of the proposed 

method to compliance problems. The specific expression for the 

adjoint depends on the quantity of interest; for example, for the 

p-norm stress, an expression for the adjoint is derived in [54]. 

Correspondingly, the change in cost can also be computed; for 

example, if the cost is the weight function: 

 k m m k

e e e
C V Vρ ρ→ = −�  (13) 

where ρ   denotes (real) material density and 
e
V  denotes volume 

of an element.  

Now consider the cost-inefficiency plot of Figure 6. Recall that 

we start with a topology and material choice with the highest cost; 

therefore our objective is to constantly reduce cost, i.e., we swap 

materials only if 0k m

e
C →∆ < . 

The change in inefficiency can be either positive or negative. 

Therefore, only quadrants 2 and 3 in Figure 6 are acceptable; 

quadrant 3 is preferrable, since both cost and inefficiency are 

reduced. Thus the angle θ  must be maximized, i.e., 
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or equivalently: 
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Hence, in the first sub-step, for each element, we find the material 

m that gives the lowest value of k m

e
θ →− .  

 

Figure 6: Feasible regions w.r.t change in inefficiency and cost. 

In the second sub-step, we reduce inefficiency while keeping cost 
a constant. To do so, we find elements that are outside the current 
design, but adjacent to the boundary. Next, for each such element 

( oute ), we find an inside element ( ine ) with the same material, 

that gives the lowest value of change in inefficiency: 

 in out in in in out out out

k k T k T k

e e e e e e e e
I u K u u K u
→∆ = −
�

 (16) 

For the second sub-algorithm note that: 

• For oute we can either extrapolate or use the last updated 

properties of the element. Here, we have used the last 

updated material and field solution prior to deletion.   

• For a voxelized mesh, in order to keep cost a constant, it is 

suficient that both elements have the same material k.  

3.5 Optimization Algorithm 

The main algorithm is illustrated in Figure 7 and each of the steps 

is described below. 

0. Start with an initial design with DΩ =  and maximum cost 

(example, maximum weight).  

1. The cost C is reduced by C∆ , either by removing material 

or replacing the most costlier material one with the less 

expensive one (see sub-step 1 for details). 

2. While keeping C constant, some of the deleted elements are 

brought back if it reduces (see sub-step 2 for details) 

3. Check if the converged design is acceptable: 

4. If Step-3 fails, reduce C∆ and repeat  

5. If the design has converged to the desired cost C, 

optimization is terminated 

6. (Else) C∆ is reinitialized, and algorithm returns to step-1. 
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Figure 7: Main algorithm  

Sub-step 1: Reduce Cost C.  The sub-algorithm 1 is illustrated 

in Figure 8, and each of the steps is described below. 

 

Figure 8: Sub-algorithm 1, reducing C. 

1.1 We first perform a finite element analysis and compute the 

inefficiency for each element’ for compliance, we have

k T k

e e e e
I u K u→∅ =  

1.2 Next, for each element we find the ranking parameter such 

that:  

( ) min{ | 0}
k m

k me

ek mm
e

I
r e C

C

→
→

→

−∆
= ∆ <

∆
  

In other words, ( )r e  gives the best possible choice of 

material change for element e . 

1.3 In the next step, we sort the array r  in an increasing order 

while keeping track of corresponding material and element. 

1.4 Initialize counter i and the current reduction in C in this step 

( Cδ ) to zero. 

1.5 Replace elements with a new material or void, accordingly. 

1.6 Update values of Cδ and i. 

1.7 Check if we have reached the allowed C∆ . 

1.8 (Yes) Update C and go to sub-step 2 

1.9 (No) return to 1.5 

Sub-step 2: Reduce Inefficiency at Constant C.  Figure 9 
shows the sub-algorithm 2, and each of its steps is explained 

herein. 

 

Figure 9: Sub-algorithm 2, increasing Performance while 

keeping C constant  . 

2.1 Find the elements which are the potential candidates to be 

brought back, that is, find the elements that are already 

discarded in the optimization process but are immediate 

neighbors to the current domain. 
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2.2 For each candidate ( oute ), find the ranking parameter s   such 

that:  

s( ) min{ | 0}
in out in out

k k k k

e e e em
e I C→ →= ∆ ∆ =

� �
 

where ‘k’ is the last material oute had before it was discarded. 

2.3 Sort s  in increasing order.  

2.4 Initialize index i   

2.5 Check if the thi entry of  s is negative:  

2.6 (Yes) Discard ine and re-add oute . 

2.7 (Yes) Move to next entry in s  and return to 2.3 
2.8 (No) Exit sub-step 

The complexity of Step 2.2 is O(m*n) where ‘m is the number of 

elements that lie outside the current design/topology, but are 

adjacent to the boundary, while ‘n’ is the number of elements that 

lie inside the current design/topology. 

3.6 Matrix-Free FEA, Voxelization, and Deflated CG 

In this Section, we briefly describe a few implementation details. 

In classic finite element analysis (FEA), the element stiffness 

matrices are typically assembled into global stiffness matrixK . 

In the present paper, we will apply matrix-free (or assembly-free) 

FEA, where K is neither assembled nor stored. Instead, the 

fundamental matrix operations such as the sparse matrix-vector 

multiplications (SpMV) are carried out in an elemental level. For 

instance, SpMVs are typically implemented by first assembling 

the element stiffness matrices as follows: 

e

e

Kx K x
  =    
∑  (17) 

In an assembly free method, this is implemented by first carrying 

out the multiplications at the elemental level, and then 

assembling the results: 

( )
e e

e

Kx K x=∑  (18) 

In other words, instead of assembling the global matrix, and then 

performing SpMV, an element-vector multiplication is carried, 

and then the results are assembled. This idea was first proposed 

in 1983 [61], but has been resurfaced due to the advent of multi-

core architectures. Further, we consider a simple finite element 

discretization, where the geometry is approximated via uniform 

hexahedral elements or ‘voxels’; the voxel-approach has gained 

significant popularity recently due to its robustness and low 

memory foot-print. The more significant benefits of voxelization 

are: (1) it is robust in that the automatic mesh generation rarely 

fails (unlike traditional meshing), (2) the mesh storage is compact, 

(3) the cost of voxelization is usually negligible and is relatively 

insensitive to geometric complexity, (4) it promotes assembly-

free-FEA [62], [63], and (5) it simplifies the proposed 

optimization algorithm.   

Moreover, we use conjugate gradient (CG) method to solve the 

FEA linear system of equations. For acceleration, we rely on 

deflation [64]. Deflation is a powerful acceleration technique for 

CG, and is more suitable for the assembly-free FEA than classic 

preconditioners such as incomplete Cholesky. In this paper, we 

use a deflation method based on rigid-body deflation presented 

in [62]. 

3.7 Filtering 

To overcome the ill-posedness in topology optimization, 

different filtering techniques have been proposed [3]. In the 

present work, two filtering schemes are employed:  

a) Sensitivity filtering: Once the element sensitivities are 

computed for each element, the node sensitivity is computed 

by averaging the neighboring element sensitivities. The 

element sensitivities are then re-computed by averaging the 

node sensitivities. This is repeated N times, where N is 

determined by the filter radius ‘r’ and the mesh element size h: 

 max 1,
r

N
h

  =    
 (19) 

In this paper, the filter radius was chosen to be 3*h, resulting 

in a typical value of 3 for N.  

b) Morphological filtering: Once the final topology is 

computed, we use morphological filtering to enhance the 

manufacturability of the design. This idea was used by 

Sigmund [65] to prevent the grey transition regions in SIMP. 

While Sigmund [65]  discussed the 2D filtering, the extension 

to 3D is straightforward; in this paper, we use the 17-element 

“structuring element” illustrated in Figure 10.  

 

Figure 10: 3D structuring element for morphological filtering. 

4. NUMERICAL EXPERIMENTS  

In this section, we demonstrate the validity of the proposed 

method through several 3D examples.  

In Section 4.1, the single-material compliance minimization of 

the classic L-bracket is compared against a two-material 

compliance minimization. This experiment illustrates that, for a 

given weight fraction, the two-material design is less compliant 

(i.e., stiffer) than the single material design. In addition, the 

condition numbers of the underlying stiffness matrices for single 

and multiple materials are compared.  

In Section 4.2, the effectiveness of the filtering method is 

illustrated through a mesh independency study on the classic 

MBB structure. 

In Section 4.3, three materials are considered for a benchmark 

problem. As expected, for a given weight-fraction, adding a 

material choice improves the performance. 

In Section 4.4, we consider the three-material C-Bracket problem 

posed in [51] where an additional displacement constraint is 

imposed. We show that the proposed method yields a lower 

weight design, and discuss the underlying reasons. 
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In Section 4.5, orthotropic materials are considered and 

illustrated. Once again, the advantage of using multiple materials 

is emphasized. 

Finally, in Section 4.6, the computational costs (running time and 

memory required) for all the above experiments are summarized. 

 In all numerical experiments, the decrement in the cost function 

for Pareto tracing is initialized to 0.025. All dimension are in 

meters, unless otherwise noted. In all tables,E , ν , and ρ denote 

Young’s modulus, Poisson ratio, and density, respectively. For 

all experiments, we rely on the assembly-free deflated conjugate 

gradient (CG) discussed in [62], with a tolerance set to 10-8. 

4.1 L-Bracket: Single and Two-Material Design 

First, we consider the L-bracket illustrated in Figure 2. The 

Pareto curve is generated using: (1) a single material A, and (2) 

two materials A and B, whose properties are summarized in 

Table 1. The weight serves as the cost function while compliance 

is minimized; 20,000 elements are used for both experiments. 

Table 1: Material Properties of A and B. 

Material  ( )E GPa  υ  
3 (Kg/m )ρ  

A 170 0.3 7100 

B 70 0.33 2700 

As stated earlier in the algorithm, we start with the heaviest 

design (all A) and optimize the topology and material distribution. 

After the optimization process is complete, we obtain the two 

Pareto curves illustrated in Figure 11. As expected, for a given 

weight fraction, the two-material design is less compliant (stiffer) 

than the corresponding single material design. 

 

Figure 11: The Pareto curves and topologies for single material 

(A) and two materials (A and B). 

For the above two experiments, Figure 12 illustrates the number 

of deflated CG iterations for each of the 32 FEAs during 

optimization. Figure 12a corresponds to single-material, while 

Figure 12b corresponds to multi-material.  As one can observe, 

the iterations increase moderately in both scenarios; this can be 

attributed to the presence of thin/slender structures in the 

topology. Both experiments required 32 finite element operations 

to complete. Thus, for this example, the cost of multi-material 

design is almost exactly the same as the single-material design.   

 

(a) CG iterations for single-material design. 

 

(b) CG iterations for two-material design. 

Figure 12: CG iterations for the L-Bracket with (a) single 

material A, (b) two materials A and B. 

4.2 MBB Structure: Mesh Independency  

In this example, we study the impact of mesh size using the 

classic MBB structure illustrated in Figure 13. The structure is 

loaded with 30 units at the center, and 15 units on either side of 

the center; the material properties are given in Table 1. 

 

Figure 13: MBB structure. 
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Figure 14 illustrates the Pareto curves with 10,000 and 40,000 

elements; as one can observe, the two curves are almost identical, 

suggesting that the method is insensitive to mesh discretization.  

 

Figure 14: Pareto curves for 10,000 and 40,000 elements. 

The final topologies are illustrated in Figure 15. Note that as the 

mesh size increases, the design details are a bit refined as 

expected. Yet the distribution of the material within the two 

designs are quite similar.   

 

Figure 15: MBB structure with 10,000 and 40,000 elements at 

weight fraction of 0.2. 

4.3 Cantilevered Beam: Three-Material Pareto Curve 

In this experiment, we consider three materials. The geometry 

and boundary conditions are illustrated in Figure 16. The design 

is discretized using 10,000 elements, i.e. 34020 degrees of 

freedom (dof). 

 

Figure 16: Cantilevered beam. 

The material properties are summarized in Table 2. We solve the 

MMTO problem for 3 different scenarios: (1) pure A (single 

material), (2) A and B (two materials) and (3) A, B, and C (three 

materials).  

Table 2: Material Properties of A, B and C 

Material  ( )E GPa  υ  
3 (Kg/m )ρ  

A 380 0.2 19250 

B 210 0.3 7800 

C 110 0.25 4390 

Figure 17 illustrates the three Pareto curves, and the topologies 

for the third scenario. As one can observe, moving from one 

material to two-materials results in a significant improvement, 

while adding the third-material results in a slight improvement. 

 

Figure 17: Effect of number of materials on Pareto Curve 

4.4 C-Bracket: Displacement Constraint 

In this experiment, we consider the C-bracket problem posed in 

[51]. The geometry and boundary conditions are illustrated in 

Figure 18 (units in meters), with a load of 10 N, while Table 3 

summarizes the material properties. The initial all-steel design 

weighs about 27.7 grams, with a maximum deflection of about 

8.3*10-7 m. The objective is to find the lightest combination of 

materials and topology such that the deflection does not exceed 

10-5 m. Observe that there are no restriction on volume fractions 

of materials used. 

 

Figure 18: C-Bracket problem considered in [51]. 



10 
Authors: A. Mirzendehdel, K. Suresh  

Table 3: Material Properties of Steel, Aluminum, Magnesium 

Material  ( )E GPa  υ  
3 (Kg/m )ρ  

Steel 210 0.3 7890 

Aluminum 70 0.3 2630 

Magnesium 44 0.3 1740 

In [51], the equivalent 2D plane-stress problem was considered 

with about 3300 quadrilateral elements. Here, we consider the 

problem in 3D since our implementation is limited to 3D. Due to 

the high aspect ratio, a total of 8,000 3D linear hexahedral 

elements was used here to discretize the domain.  

Figure 19 illustrates the convergence of the C-Bracket. The final 

design weighs 4.4 gm using a combination of steel and aluminum. 

This can be compared against the result of 4.7 gm obtained in 

[51]. In both cases, the displacement constraints are satisfied. 

The design computed here uses only Steel and Aluminum 

(although Magnesium is offered as a 3rd material of choice). 

However, in [51] all three materials are deployed in the final 

design. This may be attributed perhaps to the fact that material 

changes in [51] are more restrictive. 

A second difference between the proposed method and the 

method described in [51] is that in [51], many of the intermediate 

designs are infeasible, i.e., they violate the displacement 

constraint. However, in the proposed method, all intermediate 

designs satisfy the constraint. Thus, the designer has the option 

of choosing from a multitude of Pareto-optimal designs with 

varying performance. 

The number of iterations of the two methods are comparable: 50 

iterations in [51], compared to 41 iterations in the proposed 

method. 

 

Figure 19: Convergence plot of C-Bracket 

4.5 Table Design: Orthotropic Materials 

We now consider the use of orthotropic materials. Specifically, 

consider the table design problem posed in Figure 20, where a 

uniform vertical pressure is applied on the top-face, and the four 

bottom corners are restrained. The domain is discretized into 

20,000 elements. In practice, for such problems, one must also 

consider self-weight during optimization, but this is neglected in 

this paper. 

 

Figure 20: Table design geometry and boundary conditions 

In this experiment, we use price as the cost metric, and stiffness 

as the performance metric. Mechanical properties of A and C are 

given in Table 4, while the properties of B (an orthotropic 

material with unidirectional fibers) are summarized in Table 5. 

Since are using price as the cost metric rather than weight, the 

densities are not relevant. The relative prices for the three 

materials are given in Table 6. 

Table 4: Mechanical properties of steel and plastic 

Material  ( )E GPa  υ  

A 210 0.3 

C 10 0.45 

 

Table 5: Mechanical properties of B 

Parameter Value 

11 12
, ( )E E GPa  130, 20 

12 22
,  ( )G G GPa  6, 9.5 

12 23
,υ υ  0.01,0.05 

 

Table 6: Price list 

Material Relative Price 

A 100 

B 75 

C 25 

To generate the Pareto-curve, we start with the design with the 

largest cost; in this case, with an all-A design space. The 

objective is to find both a single-material (A) design and three-

material design (A, B, and C) with a price target of 24% of initial 

cost. When a single-material (A) is used, Figure 21 illustrates the 

final design, with the target price.  
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Figure 21: Table design using a single material 

Figure 22 illustrates the final design using three materials. Both 

designs cost exactly the same, but the design with multi-materials 

in Figure 22 is 3.0 times stiffer than that of a single-material in 

Figure 21. 

 

Figure 22: Table design using three materials. 

4.6 Run times and Memory Requirements 

For all the experiments presented in this section, Table 7 

summarizes the degrees of freedom, the target weight (or cost), 

total run-time, and required memory. All experiments were 

conducted on an Intel Core i7 CPU running at 3.4 GHz with 8GB 

of memory. Observe that all of the optimizations are completed 

in about a minute, and use the limited memory (in the order of a 

tens of Mega-Bytes). 

Table 7: Summary of computational costs. 

Expt. #DOF 
Target 

Wt./Cost 
Time (secs) 

Memory 

(MB) 

L-

Bracket 
41,730 30% 24 40 

MBB 36,288 20% 79 30 

Beam 34,020 20% 33 30 

C-

Bracket 
32,976 14% 58 10 

Table 69,696 24% 83 60 

5. SUMMARY AND FUTURE WORK 

The method discussed in this paper traces the multi-material 

Pareto curve involving two conflicting objectives such as 

stiffness and weight (or stiffness and price). The element 

sensitivity is used to drive the optimization process. While the 

element sensitivity field can be treated as a multi-colored level 

set, for computational efficiency, we propose and justify a simple 

heuristic for discrete element-swapping. The effectiveness and 

robustness of this method is demonstrated via a number of 3D 

examples, involving isotropic and orthotropic materials.  

The proposed algorithm generates topologies defined by a set of 

voxels with distinct material properties. This is in contrast to 

classic boundary representation typically used for capturing 

topologies with isotropic material. Further, the voxel based 

topologies generated here can directly be processed by voxel-

based g-code generators, for example, the OpenFab pipeline [13], 

and this is being explored. 

Future work will also focus on other performance metrics, 

considering multiple load cases and multiple constraints. Further, 

before this method can be deployed in AM, potential de-bonding, 

stress residuals, feature size, and other AM-related issues must 

be accounted for.  

Appendix A: Element Sensitivity 

The derivation of Equation (12) is included here for 

completeness. Consider the problem: 

 0Ku f=  (20) 

Suppose an element is deleted from the mesh, this will lead to a 

change in K, resulting in: 

 ( )0( )eK K u u f− ∆ + ∆ =  (21) 

Formally: 

 ( ) 1

0 ( )eu u K K f−+ ∆ = − ∆  (22) 

As a formal Neumann series: 

 ( ) ( ) ( )21 1

0 0 0 0 ...e eu u u K K u K K u− − + ∆ = + ∆ + ∆ +  
 (23) 

Neglecting higher order terms 

 ( )1

0eu K K u
−∆ ≈ ∆  (24) 

Now consider a quantity of interest: 

 ( )Q u  (25) 

The first order change in the quantity of interest is defined via 

its gradient with respect to the displacement: 

 ( )TuQ Q u∆ ≈ ∇ ∆  (26) 

Substituting Equation (24) into above, and taking the transpose: 

 ( ) ( )1

0

T

u eQ K Q K u−∆ ≈ ∇ ∆  (27) 

Defining the adjoint as: 

 1

0 d
K Qλ −= − ∇  (28) 

We have:  

 
0 0

T

e
Q K uλ∆ ≈ − ∆  (29) 

The above equation captures the first order change in any 

quantity of interest when an element is deleted. When an element 

is inserted, the sign changes: 

 
0 0

T

e
Q K dλ∆ ≈ ∆  (30) 

From Equations (29) and (30) follows Equation (12) for element 

swapping (deleted one material and add the other). As a special 

case when the quantity of interest is the compliance, we have: 

  ( ) TQ u f u=  (31) 

Therefore: 

 
uQ f∇ =  (32) 

And the adjoint is given by: 

 1

0
K f uλ −= − = −  (33) 

By substituting Equation (33) in Equation (12), we obtain 

Equation (9). 
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