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ABSTRACT* 1 

Topology optimization is a systematic method of 2 

generating designs that maximize specific objectives. 3 

While it offers significant benefits over traditional shape 4 

optimization, topology optimization can be 5 

computationally demanding and laborious. Even a simple 6 

3D compliance optimization can take several hours. 7 

Further, the optimized topology must typically be 8 

manually interpreted and translated into a CAD-friendly 9 

and manufacturing friendly design. 10 

This poses a predicament: given an initial design, 11 

should one optimize its topology? In this paper, we 12 

propose a simple metric for predicting the benefits of 13 

topology optimization. The metric is derived by 14 

exploiting the concept of topological sensitivity, and is 15 

computed via a finite element swapping method. The 16 

efficacy of the metric is illustrated through numerical 17 

examples.  18 

 INTRODUCTION 19 

Design is an iterative process; with the advent of 20 

advanced computing methods, various strategies have 21 

been proposed to reduce design cycles. Topology 22 

optimization [1] is one such method to construct and 23 

discover novel designs. In topology optimization, one 24 

starts with an initial design, on which a structural problem 25 

is posed; see Figure 1.  26 

                                                                                                     

 

 27 

Figure 1: A STRUCTURAL PROBLEM OVER A DESIGN-28 

SPACE.  29 

In this example, it is assumed that the initial design 30 

coincides with the allowable design space, but this need 31 

not be the case. Then, using finite element analysis 32 

(FEA), and one of the various topology optimization 33 

methods such as SIMP [2]–[5], evolutionary [6]–[8],  or 34 

level-set [9]–[11], an optimal topology is constructed.  35 

For the problem posed in Figure 1, if the objective is 36 

compliance, the optimal topology for a volume fraction of 37 

0.5, in the absence of other constraints, is illustrated in 38 

Figure 2(A). On the other hand, if the objective is the p-39 

norm von Mises stress [12], an optimal topology is 40 

illustrated in Figure 2(B). Such insights can be 41 

particularly valuable during the initial stages of design.  42 

 43 

Figure 2: TOPOLOGIES THAT MINIMIZE: (A) 44 

COMPLIANCE, (B) STRESS. 45 



 

Topology optimization has been used to design aircraft 1 

components [13], [14], spacecraft modules [15], 2 

automobiles components [16], cast components [17], 3 

compliant mechanisms [18]–[21], etc. 4 

Unfortunately, it can be a computationally demanding 5 

task. For example, even a simple compliance 6 

minimization problem in 3D can take several hours for 7 

completion [22], while stress minimization and 8 

imposition of manufacturing constraints can take several 9 

days for completion [23]. It can also be laborious in that 10 

the optimized topology must often be interpreted and 11 

converted into a CAD-friendly and/or manufacturing-12 

friendly parametric design. 13 

Thus, while advanced computing methods such as 14 

topology optimization exists, the high computational and 15 

labor costs poses a predicament to the designer: Given an 16 

initial design, such as the one in Figure 3, should one 17 

optimize its topology? Can one predict the potential 18 

benefits before embarking on a time-consuming process? 19 

   20 

Figure 3: AN EXAMPLE TO ILLUSTRATE THE 21 

RESEARCH PROBLEM. 22 

At first glance, it may appear that such questions cannot 23 

be answered without first carrying out a topology 24 

optimization study! However, in this paper we 25 

demonstrate that it is indeed possible to estimate the 26 

benefits through computationally efficient and robust 27 

algorithms, requiring little or no human input. 28 

As designs grow in complexity, such value-driven 29 

questions will become even more important. For example, 30 

given an assembly of parts (see Figure 4), which of the 31 

parts, if any, should one optimize? How do we rank-order 32 

these parts for optimization? 33 

   34 

Figure 4: EXTENSION OF RESEARCH QUESTION TO 35 

ASSEMBLIES. 36 

In this paper, we propose a simple metric, based on the 37 

concept of topological sensitivity [24]–[28], for predicting 38 

the benefits of topology optimization.  39 

LITERATURE REVIEW 40 

Topology Optimization Methods 41 

Broadly, there are three popular classes of topology 42 

optimization methods today: Solid Isotropic Material with 43 

Penalization (SIMP), level-set and evolutionary.  44 

Among these, SIMP is perhaps the most widely used 45 

[29]. In the popular finite element formulation of SIMP, a 46 

density variable is assigned to each element [2], [30] and 47 

optimized (see Figure 5); typical optimization in SIMP 48 

can take 100’s of finite element operations. Most 49 

commercial topology optimization systems such as 50 

Optistruct [31], Genesis [32], and Atom [33] are based on 51 

SIMP. The primary advantages of SIMP are that it is easy 52 

to implement and the theoretical foundation is well 53 

established. However, the ill-conditioning of the stiffness 54 

matrices [34], due to presence of low-density elements, 55 

can lead to high computational costs for iterative solvers 56 

[22], [23] in 3D. The strengths and weaknesses of SIMP 57 

are inherited by commercial implementations. 58 

 59 

Figure 5: A TYPICAL STRUCTURAL PROBLEM, 60 

AND PROGRESSION IN SIMP. 61 

The second class of topology optimization methods 62 

define the evolving topology via a level-set function that 63 

is typically controlled via Hamilton-Jacobi equations [35]. 64 

An important advantage of level-set methods over SIMP 65 

is the unambiguous description of the boundary. 66 

Consequently, level-set based methods are particularly 67 

effective in boundary-dependent problems and stress-68 

constrained topology optimization. Numerous authors 69 

have demonstrated the success of level-set methods; for  70 

example, see [36], [37], [38].  71 

The third class are the evolutionary methods; among 72 

these, bi-directional evolutionary structural optimization 73 

(BESO) [39], is the most popular. BESO starts from an 74 

initial design space, and iterates to the final topology by 75 

removing ‘undesirable’ elements, and simultaneously 76 

adding ‘desirable’ elements. It is argued in [40] that 77 

BESO can search the entire design domain more 78 

thoroughly compared with traditional methods, with a 79 

better likelihood of finding the global optimum.  80 

However, BESO also suffers from several critical 81 

shortcomings as pointed out in [41]. 82 

Computational Challenges 83 

Since all topology optimization methods entail repeated 84 

finite element analysis, the computational cost is high, 85 

independent of the method (some being more expensive 86 

than the others). For example, in [42], problems with 1~3 87 



 

million degrees of freedom were optimized in 3~40 hours 1 

(depending on the specific problem) on a Cray T3E super 2 

computer. In [22], using specialized Krylov recycling 3 

methods, problems with about 1 million degrees of 4 

freedom was optimized in 45 hours on a regular desktop. 5 

Using Optistruct (2013 release) [31], the benchmark 6 

problem posed in [22] was solved in 20 hours on a high-7 

end server. 8 

All of the above problems are simple single-load 9 

unconstrained compliance-minimization problems. The 10 

challenges increase many-fold in non-compliance and 11 

multi-load problems. 12 

One possible strategy of reducing the computational 13 

effort is to use a coarse finite element mesh, but this is not 14 

desirable for at least two reasons: (1) coarse-meshes do 15 

not accurately capture the behavior of a structure, leading 16 

to erroneous results during optimization, and (2) 17 

disconnected topologies are more likely to occur with a 18 

coarse mesh.  19 

In summary, while numerous advances have been made, 20 

the current challenges in topology optimization beg 21 

strategic questions: Given an initial design, is it worth 22 

carrying out topology optimization? Can one estimate the 23 

potential benefits, prior to optimizing? 24 

TECHNICAL BACKGROUND 25 

In this Section, we define a quantifiable metric for 26 

predicting potential benefits of topology optimization. 27 

The metric exploits the concept of topological sensitivity 28 

discussed next. 29 

Topological Sensitivity 30 

The proposed methodology rests on the concept of 31 

topological sensitivity that captures the first order impact 32 

of inserting a small circular hole within a domain on 33 

various quantities of interest. This concept has its roots in 34 

the influential paper by Eschenauer [43], and has later 35 

been extended and explored by numerous authors [24]–36 

[28], including generalization to arbitrary features [44]–37 

[46].  38 

To illustrate the topological sensitivity concept, 39 

consider the design illustrated earlier in Figure 5a. 40 

Consider now inserting a small hole within the domain, 41 

i.e., modifying the topology, as in Figure 6a. Clearly, the 42 

structural response will change, and so will various 43 

quantities of interest. Topological sensitivity (TS) is the 44 

expected change in a quantity of interest q  due to an 45 

infinitesimal topological change at a particular location p . 46 

If the quantity of interest is the compliance, one can show 47 

that the desired sensitivity in 2-D is given by [47]: 48 

ε

ε ν
σ ε σ ε

νπε ν→

− −
≡ = −

+ −
2 20

( ; ) 4 1 3
( ) lim : ( ) ( )

1 1

q p q
p tr trT �  (1) 49 

TS is a spatial field in that the sensitivity depends on 50 

where the hypothetical hole is inserted. Similar 51 

expressions can be deduced in 3-D, and for various 52 

quantities of interest [44]. The TS field for the problem 53 

posed in Figure 5(A) is illustrated in Figure 6(B).  54 

 55 

Figure 6: (A) TOPOLOGICAL CHANGE, (B) 56 

TOPOLOGICAL SENSITIVITY FIELD. 57 

While the TS field has been used for optimization [23], 58 

it is not the main focus of this paper. The objective here is 59 

to use TS as a means of estimating the benefits of 60 

topology optimization. 61 

Observe that regions with low TS (for example, near 62 

point-A) are less critical than regions with high TS (for 63 

example, near point-B). Further, the TS carries 64 

quantitative information on how the quantity of interest 65 

will change if the domain is modified; it follows from 66 

above that: 67 

 ε πε≈ +
2( ; ) ( )q p q pT � (2) 68 

The proposed metric and algorithm discussed in the 69 

next Section rest on this simple observation. 70 

PROPOSED METHOD 71 

In this Section, we present the proposed metric and 72 

algorithm. The proposed method relies on the topological 73 

sensitivity concept, and also borrows ideas from the 74 

BESO method [39]. 75 

Proposed Metric 76 

Consider the 2-D design illustrated in Figure 7, subject 77 

to a structural load. Observe that initial design is a proper 78 

subset of the allowable space. In other words, one can 79 

subtract material from the initial design or add material to 80 

it within the allowable space. For simplicity, we shall 81 

assume that the designer is interested in two conflicting 82 

quantities of interest: compliance (J) and the volume (V).   83 

Should the initial design be optimized within the 84 

allowable space? Are there significantly better designs 85 

within the allowable space, for example, with the same 86 

volume, but lower compliance, or same compliance but 87 

lower volume?  88 



 

      1 

Figure 7: THE INITIAL DESIGN AND ALLOWABLE 2 

SPACE. 3 

To answer this question, observe that the initial design 4 

can be represented as a point 
0 0( , )V J  in the volume-5 

compliance graph as in Figure 8.  6 

 7 

Figure 8: THE INITIAL DESIGN POINT. 8 

Now consider the hypothetical problem of minimizing 9 

compliance while keeping volume a constant; this is 10 

illustrated schematically in Figure 9. It is well known that 11 

there exists an optimal solution for the compliance 12 

minimization problem [48]. Of course, the optimal 13 

solution, and the possible reduction in compliance J∆  are 14 

unknown.   15 

  16 

Figure 9: MINIMIZATION OF COMPLIANCE. 17 

Similarly, consider the hypothetical minimization of 18 

volume while keeping compliance a constant (see Figure 19 

10). Once again, the final topology and volume reduction 20 

V∆ are unknown.  21 

           22 

Figure 10: MINIMIZATION OF VOLUME. 23 

To estimate the benefits of topology optimization, it is 24 

sufficient to estimate J∆  and V∆ . Once these two 25 

quantities are estimated (see next few sections), one can 26 

compute the normalized distances 
0 0( / , / )V V J J∆ ∆  that 27 

range from 0 to 1. These normalized distances are the 28 

proposed metrics for a given design. 29 

If a particular normalized distance is close to zero, it 30 

implies that the design is close to being optimal, i.e., 31 

topology optimization is unlikely to yield a significant 32 

reduction in the quantity of interest (along that direction). 33 

On the other hand, if a metric is close to 1, then the design 34 

point is far from being optimal, suggesting significant 35 

benefits from topology optimization. Examples provided 36 

in the next few Sections support this argument. The cutoff 37 

value may be case-dependent, and requires further 38 

investigation.   39 

Metric Estimation  40 

Given a design in Figure 7, we shall assume an FEA has 41 

been carried out, and the topological sensitivity for 42 

compliance has been computed. A finite element mesh for 43 

the design is illustrated in Figure 11. 44 

 45 

Figure 11: THE INITIAL DESIGN AND ALLOWABLE 46 

SPACE ARE MESHED WITH FINITE ELEMENTS. 47 

Consider two elements ‘a’ and ‘b’ identified in Figure 48 

11, where element ‘a’ is outside the initial design, while 49 



 

element-b is inside the design; we will assume that the 1 

two elements are approximately of equal area. Let the 2 

topological sensitivity (TS) of element ‘a’ be 0.9 while 3 

that of element 'b' be 0.1.  4 

Recall from Section 3.1 that TS values in finite element 5 

mesh indicate how important a specific element is for the 6 

objective of interest. Since TS value of element 'a' is 7 

higher than that of element 'b', element 'a' is significantly 8 

more important to the structure than element 'b'. 9 

Therefore, to minimize compliance, while keeping 10 

volume a constant, one can insert element 'a' and delete 11 

element 'b' as illustrated in Figure 12.  12 

 13 

Figure 12: THE DESIGN AND ALLOWABLE SPACE 14 

AFTER SWAPPING A SINGLE PAIR OF ELEMENTS. 15 

The change in compliance can be computed via Eqn. (2)16 

, and one can now repeat the process, leading to element-17 

swapping algorithm discussed next. 18 

Element-Swapping Algorithm for Estimating J∆  19 

The following element-swapping algorithm estimates 20 

the possible reduction in compliance J∆ , while keeping 21 

volume (approximately) a constant. 22 

1. Set the estimate 0J∆ =   23 

2. Carry out a finite element study on the given design 24 

3. Compute the topological sensitivity (TS) for compliance 25 

4. Sort all ‘out’ elements in a decreasing order of TS values 26 

5. Sort all 'in' elements in an increasing order of TS values  27 

6. Pick the first element ‘a’ from the ‘out’ list, and the first 28 

element ‘b’ from the ‘in’ list. 29 

7. If the TS-field at ‘b’ is less than the TS-field at ‘a’, then: 30 

8.  Swap(a, b), i.e., insert element ‘a’, and delete 31 

 element ‘b’; remove these two elements from their 32 

 respective lists.  33 

9.  Update: 34 

 ( ) * ( ) ( ) * ( )J J TS a Volume a TS b Volume b∆ = ∆ + −  35 

 Go back to step-6 36 

10. Else: 37 

 Stop. 38 

Illustrative Example 39 

If one executes the above algorithm on the design in 40 

Figure 11, the predicted topology and the estimated 41 

normalized distance (
0/ 0.76J J∆ = ) are illustrated in 42 

Figure 13(A). In comparison, if one did carry out a full 43 

topology optimization study (requiring numerous FEAs), 44 

Figure 13(B) illustrates the optimized topology and the 45 

actual normalized distance (
0/ 0.83J J∆ = ).  46 

           47 

Figure 13: (A) PREDICTED TOPOLOGY BY 1FEA, 48 

AND (B) ACTUAL TOPOLOGY REQUIRED BY 70-49 

FEA. 50 

Observe the following: 51 

1. Although the predicted topology differs significantly 52 

from the optimized topology, the estimated normalized 53 

distance suggests that the initial design in Figure 7 is 54 

far from optimal, and would benefit from topology 55 

optimization. 56 

2. The swapping algorithm relies on a single finite 57 

element analysis, while topology optimization entails 58 

numerous (~70) finite element analysis and other 59 

sensitivity calculations. 60 

3. The accuracy of the estimation can be further improved 61 

by using multiple FEAs. Specifically, in step 9, instead 62 

of returning back to step-6, one can (optionally) return 63 

back to step-2. This leads to an update in the TS values; 64 

for example, Figure 14 illustrates the improved 65 

topology and metric (
0/ 0.78J J∆ = ) if one allows for 5 66 

FEAs.   67 

           68 

Figure 14: (A) PREDICTED TOPOLOGY BY 5FEA, 69 

AND (B) ACTUAL TOPOLOGY.  70 

Element-Swapping Algorithm for Estimating V∆  71 

Similarly, to estimate V∆  (see Figure 10), the swapping 72 

algorithm is modified as follows. 73 

1. Set the estimate 0V∆ =   74 

2. Carry out a finite element study on the given design 75 

3. Compute the topological sensitivity (TS) field 76 

4. Sort all 'in' elements in an increasing order of TS values  77 



 

5. Sort all ‘out’ elements, in a decreasing order of TS values 1 

6. Pick the first element ‘a’ from the sorted list in step-5, Find 2 

the set of elements ‘bi’ from the sorted list in step-4 such 3 

that the sum(Volume(bi)*TS(bi)) is greater than or equal to 4 

Volume(a)*TS(a).  5 

 If the set is null 6 

  Stop 7 

 Else 8 

  Delete all elements bi, and insert element-a; 9 

 remove these elements from their respective lists. 10 

  Update V∆  as follows, and go back to step 6: 11 

 ( ) ( )i

i

V V Volume a Volume b∆ = ∆ + −∑  12 

Observe that, in order to reduce volume, far more 13 

elements are deleted than inserted, while the compliance 14 

remains (nearly) a constant.  15 

Illustrative Example 16 

If one executes the above algorithm on the design in 17 

Figure 7, the final topology ( 0.72v = ) and the estimated 18 

normalized metric (
0/ 0.13V V∆ = ) are illustrated in Figure 19 

15(A), while the optimized topology ( 0.35v = ) and actual 20 

metric (
0/ 0.57V V∆ = ) are illustrated in  Figure 15(B).  21 

           22 

Figure 15: (A) 1 FEA BASED PREDICTED 23 

TOPOLOGY AND (B) ACTUAL TOPOLOGY BY 43-24 

FEA 25 

As before, additional FEAs can improve the accuracy. For 26 

example, Figure 16(A) shows the final topology ( 0.53v = ) 27 

and estimated normalized metric (
0/ 0.36V V∆ = ) when 5 28 

FEAs are permitted. 29 

         30 

Figure 16: 5 FEA BASED PREDICTED RESULTS 31 

VERSUS ACTUAL TOPOLOGY 32 

It can be observed that the proposed element swapping 33 

method shares some similarities with evolutionary 34 

structural optimization (ESO) [39]. However, the 35 

proposed method is notably different from ESO in that the 36 

proposed method depends on mathematically-rigorous 37 

topological sensitivity that can be generalized to any 38 

quantity of interest. On the other hand, ESO exploits 39 

quantities such as von Mises stress and strain energy 40 

density [41] that are at best, applicable to compliance 41 

minimization problems. 42 

3D NUMERICAL EXPERIMENTS 43 

In this Section, we demonstrate the efficacy of the 44 

proposed method through numerical experiments in 3D. 45 

The default material properties are 112 *10E = Pa and 46 

0.33ν = .  47 

Flange Problem 48 

The first experiment involves the flange with the 49 

allowable space illustrated in Figure 17.  50 

 51 

Figure 17: ALLOWABLE SPACE FOR THE FLANGE 52 

PROBLEM. 53 

An initial design is illustrated in Figure 18; it is fixed on 54 

the two side-holes, while a unit vertical load is applied in 55 

the middle hole. For FEA, the structure is discretized into 56 

10,000 elements.  57 

 58 

Figure 18: INITIAL DESIGN FOR THE FLANGE 59 

(TWO VIEWS). 60 

The estimation for the ∆J/Jo and ∆V/Vo are carried out 61 

using both 1-step FEA and 5-step FEA approximations, 62 

and the results are summarized in Table 1. 63 

As expected, the 5-FEA predictions are more accurate 64 

than the 1-FEA predictions. Since the predicted metrics 65 

are small, one can conclude that the initial design in 66 

Figure 18 is not worth optimizing. This is consistent with 67 

the actual metrics in Table 1.  68 



 

Table 1: ESTIMATION RESULTS FOR INITIAL 1 

DESIGN IN Figure 18. 2 

 1 FEA 5 FEA Actual  

(~70 FEAs) 

∆J/Jo 0.04 0.05 0.07 

∆V/Vo 0.31 0.12 0.08 

Thick Plate  3 

As a second example, consider the 3D thick plate in 4 

Figure 19 that will serve as the allowable space.  5 

 6 

Figure 19: ALLOWABLE SPACE FOR THE THICK 7 

PLATE PROBLEM. 8 

An initial design is illustrated in Figure 20; it is fixed at 9 

both sides and a uniformly distributed load is applied on 10 

the top surface. The structure is meshed with 12,000 finite 11 

elements.  12 

 13 

Figure 20: INITIAL DESIGN (TWO VIEWS). 14 

The estimation for the ∆J/Jo and ∆V/Vo using 1-step 15 

FEA and 5-step FEA approximations, and the results are 16 

summarized in Table 2. Observe that the predicted 17 

metrics are reasonably high, suggesting that the initial 18 

design in Figure 20 is far from optimal. This is consistent 19 

with the actual improvement in the metrics (see Table 2). 20 

Table 2: ESTIMATION RESULTS FOR INITIAL 21 

DESIGN IN Figure 19. 22 

 1 FEA 5 FEA Actual 

(~70 FEAs) 

∆J/Jo 0.24 0.44 0.59 

∆V/Vo 0.52 0.28 0.31 

Knuckle Problem 23 

The third experiment involves the 3-D knuckle 24 

illustrated in Figure 21, that will serve as the allowable 25 

space. The structure is fixed at both bottom holes and a 26 

force is applied on the top hole. For FEA, the domain was 27 

discretized into 13,000 elements.   28 

 29 

Figure 21: ALLOWABLE SPACE AND THE 30 

STRUCTURAL PROBLEM. 31 

This time, we will consider eight different initial 32 

designs are in Figure 22; the objective is to estimate the 33 

metrics for each of these designs. 34 

 35 

Figure 22: EIGHT INITIAL DESIGNS FOR THREE-36 

HOLES BRACKET. 37 

For the initial designs in Figure 22, the estimated ∆J/Jo 38 

versus actual ∆J/Jo is illustrated in Figure 23. Observe 39 

that: (1) the solid line represents an ideal scenario where 40 

estimation coincides with actual, and (2) there is a good 41 

correlation between the estimated and actual metrics. 42 

Based on Figure 22, one can conclude that design ‘h’ is 43 

far from optimal, while design ‘a’ is close to optimal. 44 



 

 1 

Figure 23: ESTIMATION FOR POTENTIAL 2 

COMPLIANCE IMPROVEMENT FOR INITIAL 3 

DESIGNS IN Figure 22. 4 

Similarly, Figure 24 illustrates the predicted metrics  5 

∆V/Vo  using 1 and 5 FEAs. Once again, design ‘h’ is 6 

furthest from being optimal while design ‘a’ is closest to 7 

being optimal.  8 

 9 

Figure 24: ESTIMATION FOR POTENTIAL VOLUME 10 

REDUCTION FOR INITIAL DESIGNS IN Figure 22. 11 

If we combine the two estimations (Figure 23 and 12 

Figure 24), one can arrive at Figure 25, that illustrates the 13 

benefits with respect to two different criteria. 14 

 15 

Figure 25: ESTIMATION FOR POTENTIALS OF 16 

COMPLIANCE IMPROVEMENT AND VOLUME 17 

REDUCTION FOR INITIAL DESIGNS BY 1 FEA IN 18 

Figure 22. 19 

In Figure 25, based on the distances that design points 20 

are from the two axis, we propose to divide the region 21 

into three zones as shown: 22 

1.  If a design falls in the 0%-20% zone, it close to being 23 

optimal; designs “a, b, g, and f” fall into this 24 

category. 25 

2.  If a design falls in the 40%-100% zone, the potential 26 

for further optimization is significant; designs “c and 27 

h” fall into this category. 28 

3.  Finally, if a design falls in 20%-40% (“fuzzy zone”),  29 

the designer has two options: (a) if computing 30 

resource is limited, then do not optimize; (b) if 31 

computing resources are available, then carry out a 5-32 

iteration-FEA based estimation for more accurate 33 

estimation; designs “e and d” fall into this category. 34 

Table 3: OPTIMIZATION SUGGESTIONS FOR 35 

INITIAL DESIGNS IN Figure 22. 36 

Initial 

designs 

Optimize? Optimization rank 

based on 1-FEA 

 

NO 8 

 

NO 7 

 

YES 2 



 

 

Unsure 4 

 

Unsure 3 

 

NO 5 

 

NO 6 

 

YES 1 

CONCLUSIONS AND FUTURE WORK 1 

The main question raised in this paper is: “Can one 2 

predict the benefits of topology optimization?” 3 

Based on the case-studies, we believe the answer is a 4 

cautious “Yes”. In particular, using a few (~5) finite 5 

element studies, we showed that one can predict the 6 

benefits of topology optimization (for a given scenario).  7 

The present work focused only on compliance and 8 

volume fraction. We believe it can be extended to other 9 

quantities of interest, e.g. von Mises stress and eigen-10 

values, since the concept of topological sensitivity can be 11 

extended to such quantities as well [44], [49], [12]. Future 12 

work will also focus on assembly of parts (see Figure 4). 13 

Specifically, which of the parts, if any, should one 14 

optimize? How do we rank-order these parts for 15 

optimization? 16 
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