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ABSTRACT 

 Topology optimization is a systematic method of generating 

designs to meet specific engineering requirements. It is exploited 

today in several industries including aircraft, automobile, and 

machinery, and it strongly complements the emerging field of 

additive manufacturing. Yet, the wide-spread use of topology 

optimization has been deterred due to high computational cost 

and significant software/hardware investment. 

 In this paper, we propose a cloud based topology optimization 

(CTO) framework to overcome these challenges, thereby 

promoting the wider use of topology optimization. CTO requires 

a confluence of several methods and technologies, each of which 

is discussed in this paper.  

 First and foremost, CTO requires a fast 3D topology 

optimization method that can respond rapidly to multiple clients. 

Here, PareTO, a topological sensitivity based method is used as 

the backbone of the framework. PareTO relies on limited-

memory finite element analysis with a deflated linear solver that 

is designed to exploit multi-core and many-core architectures. At 

the client-end, the framework relies on JavaScript based WebGL 

and ThreeJS technologies to display 3D geometry and formulate 

structural problems within a browser. Finally, Ajax, php and 

HTML5 technologies are exploited to achieve asynchronous and 

robust user experience. An implementation of this framework is 

available at www.cloudtopopt.com; to use this free service, 

JavaScript must be enabled within the browser. 

INTRODUCTION 

 Topology optimization has rapidly evolved from an academic 

exercise into an exciting discipline with numerous industrial 

applications [1], [2]. Applications include optimization of 

aircraft components [3], [4], spacecraft modules [5], automobiles 

components [6], and compliant mechanisms [7]–[10]. 

 A finite element based structural topology optimization 

problem may be posed as (see Figure 1):   
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 In other words, the objective is to find the optimal topology, 

within a given design space, that minimizes a specific objective 

and satisfies certain design constraints. Typical objectives 

include volume fraction, compliance, etc., while typical 

constraints include stress, buckling, and manufacturing 

constraints. 

 

Figure 1: A STRUCTURAL PROBLEM OVER DESIGN 

SPACE D. 

 Various topology optimization methods such as 

homogenization [11], Solid Isotropic Material with Penalization 

(SIMP) [12], level-set [13]–[16], and evolutionary methods [17]–

[19], have been proposed for solving such problems; please see 

[20], [21] for recent reviews. For the problem posed in Figure 1, 



 

 

if the objective is compliance, the optimal topology for a volume 

fraction of 0.5, in the absence of other constraints, is illustrated 

in Figure 2a. On the other hand, if the objective is the p-norm von 

Mises stress [22], an optimal topology is illustrated in Figure 2b. 

 

 

Figure 2: TOPOLOGIES THAT MINIMIZE (A) 

COMPLIANCE, (B) STRESS.  

 While the theory of topology optimization has reached a high 

level of maturity and has significant potential [23], its widespread 

use has been deterred for several reasons including high-

computational cost and hardware/software investment. 

Researchers have made several inroads towards popularizing 

topology optimization. For example, an interactive topology 

optimization ‘app’ was proposed in [24] to minimize compliance 

in 2D and 3D. 

 Along similar lines, we explore here the use of cloud 

computing to further promote the wider use of 3D topology 

optimization. Cloud computing, in essence, is time-sharing of 

hardware and software to deliver low-cost service. Through 

cloud computing, duplicated infrastructure costs are avoided, 

software updates are easier and service demands are evened out. 

For all these reasons, cloud computing in Information 

Technology (IT), for example, is experiencing growth rates of up 

to 50% per year. 

 Implementing a cloud based topology optimization (CTO) 

poses several challenges that have not been addressed by the IT 

industry. For example, CTO requires manipulation of 3D 

geometry within a browser, posing structural problem, repeated 

3D finite element analysis, and robust computation of optimal 

topologies. This paper describes one particular strategy on how 

these challenges can be addressed. 

 Section 2 provides an overview of topology optimization 

methods with an emphasis on the underlying computation 

challenges, followed by a review of cloud computing in 

engineering. In Section 3, the proposed CTO framework is 

elaborated, and illustrated through case-studies in Section 4. 

Conclusions and future work are summarized in Section 5. 

LITERATURE REVIEW 

Topology Optimization 

 Among various topology optimization methods, Solid 

Isotropic Material with Penalization (SIMP) is perhaps the most 

widely used [25]. In SIMP, the domain is typically discretized 

via a finite element mesh, and a (pseudo) density variable is 

assigned to each element [12], [26]. Material properties are 

linked to these density-variables, and optimized to meet the 

desired objective. Most commercial topology optimization 

systems such as Optistruct [27], Genesis [28], and Atom [29] are 

based on SIMP. 

 The primary advantages of SIMP are that it is easy to 

implement and the theoretical foundation is well established. 

However, the ill-conditioning of the stiffness matrices , due to 

presence of low-density elements, can lead to high computational 

costs for iterative solvers [30], [31] in 3D, and can lead to 

instabilities during Eigen-mode and buckling analysis, requiring 

special treatment [32]. 

 To illustrate the high computational cost, consider the edge-

cantilever beam illustrated in Figure 3a; the domain is discretized 

using 180x60x30 8-node brick elements, resulting in about a 

million degrees of freedom. The objective is to find the 

compliance-minimizing topology of 50% volume fraction; a 

typical solution is illustrated in Figure 3b. 

• In [30], with a specialized iterative solver with SIMP, 

computing the optimal topology required over 45 hours, on an 

AMD Opteron (2 core, with 8 GB memory). 

• More recently, this problem was solved using SIMP and a 

direct solver in Optistruct 12.0 [27], on an Intel Xeon 12 core, 

with 96 GB memory, in 20 hours. 

Using SIMP in a cloud based 3D topology optimization 

framework is therefore challenging. 

 

 

Figure 3: (A) A STRUCTURAL PROBLEM. (B) OPTIMAL 

TOPOLOGY. 

 The second strategy for topology optimization (as opposed to 

SIMP) is to define the evolving topology via a level-set function 

that is typically controlled via Hamilton-Jacobi equations [33]. 

An important advantage of level-set methods over SIMP is the 

unambiguous description of the boundary. Consequently, level-

set based methods are particularly effective in boundary-

dependent problems and stress-constrained topology 

optimization. Numerous authors have demonstrated the success 

of level-set methods; for  example, see [34], [35], [36].  

 In the proposed CTO framework, we rely on a particular type 

of level-set method, namely PareTO [31], [37] that exploits the 

concept of topological sensitivity with additional computational 

advantages; this method is discussed later in Section 3. 



 

 

Cloud Computing in Engineering 

 Cloud computing is essentially time sharing of computing 

resources, a concept that is as old as computer technology [38]. 

According to National Institute of Standards and Technology 

(NIST) [39]: 

“Cloud computing is a model for enabling ubiquitous, 

convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort 

or service provider interaction.” 

 Over the last few years, the concept of cloud has been applied 

across multiple engineering disciplines including (1) cloud based 

design, (2) cloud based finite element analysis, and (3) cloud 

based manufacturing. These are briefly reviewed next. 

Cloud based Design 

 The objective in cloud based design is to provide an 

environment for designers to create, edit and share 3D CAD 

designs. An example of a cloud-based design environment is 

Autodesk’s 123D [40] that provides a platform for transforming 

2D photos, sharing and printing 3D designs. AutoCAD 360 [41] 

is a cloud based embodiment of the popular desktop AutoCAD 

software. Similarly, other CAD vendors such as Dassault 

Systems are offering cloud based design services; please see [42] 

for additional examples of cloud based design.  

Cloud based FEA 

 On the other hand, in cloud based finite element analysis, the 

objective is to provide a high-performance finite-element 

computing service over the network. The advantages of a cloud 

based finite element service over traditional desktop computing 

are primarily cost and convenience. For example, the authors of 

[43] state that “the installation and large-scale maintenance of 

these FEA tools over continuously evolving operating system 

(OS), processor and cluster technologies can be costly and 

cumbersome for the end users”  … justifying the use of cloud 

based FEA. Specifically, in [43], the authors characterize the 

performance of linear and nonlinear mechanical structural 

analysis workloads over multi-core and multi-node computing 

resources using CalculiX, an open-source FEA software. They 

also propose a smart scheduler for dynamic resource allocation 

on MPI controlled parallel architectures.  

Cloud based Manufacturing  

 Cloud based manufacturing encompasses different services 

including instant quoting engines, competitive quoting from 

multiple manufacturers, specialized 3D printing cloud service, 

etc.; see [42]  for a detailed discussion on cloud based 

manufacturing. 

Cloud based Topology Optimization  

 While there are several desktop implementations of topology 

optimization, we are not aware of a cloud based implementation. 

However, as mentioned earlier, an interactive topology 

optimization ‘app’ was recently proposed in [24] to minimize 

compliance in 2D and 3D. 

PROPOSED FRAMEWORK  

Objectives and Guidelines 

 The proposed cloud based topology optimization (CTO) 

framework was developed using the following set of guidelines: 

• Ease of Use: One of the primary goals of the CTO 

framework is to popularize topology optimization. 

Therefore the framework is kept simple by exposing only a 

limited number of common objectives and constraints. 

• Fast, Free Service: The CTO framework is envisioned to be 

a free service delivering fast server response. Since high-end 

computer clusters are difficult to justify in a free service, 

CTO currently relies on a single E3-1270 (V3) Xeon 

workstation, equipped with 8 GB of memory. Yet, fast 

server response is achieved by: (1) limiting the finite element 

degrees of freedom to about 150,000, and (2) relying on 

limited-memory deflation techniques [44] and (3) fine-grain 

parallelism. Statistics shows that FEA operations are 

executed in less than 3 seconds, while topology optimization 

problems are solved in 10 to 150 seconds (depending on the 

degrees of freedom, desired volume fraction and 

constraints). 

• Robustness: The framework must be robust in that neither 

the finite element analysis nor the topology optimization 

process should fail. To ensure robustness, incorrect problem 

formulations (example, incorrect boundary conditions) are 

first identified and corrected at the client-side, without 

consuming valuable server resources. Second, finite element 

failures, typically associated with meshing, are avoided by 

replacing traditional methods of mesh generation with 

structured-mesh generation (‘voxelization’). Finally, 

topology optimization failures, typically due to disconnected 

topologies, are avoided by tracing the pareto-curve [31]; see 

below for details.  

• Browser Independence: The framework must be accessible 

from any of the popular browsers including Internet 

Explorer, Firefox, Chrome, Safari and Opera. This is 

achieved here by relying on cross-platform HTML5 and 

WebGL. For these technologies to work, the only 

requirement is that JavaScript must be enabled within the 

browser. 

 In the following sections, we describe how each of these 

objectives has been achieved.  While the current framework is 

limited both in the number of degrees of freedom, and nature of 

topology optimization problems, the core server module, namely 

PareTO, has been tested on problems with millions of degrees of 

freedom, and a variety objectives and constraints [31]. 

 The schematic interaction between the client and server is 

illustrated in Figure 4. 



 

 

 
Figure 4: INTERACTION BETWEEN CLIENT AND 

SERVER.  

Topology Optimization Problems  

 The generic topology optimization posed in Equation (1.1) 

captures a large class of multi-load, multi-constraint problems. 

However, as stated earlier, only a limited class of problems is 

exposed in the CTO framework.  

 The first class of problems exposed in the CTO framework 

include compliance minimization problems subject to volume, 

displacement and stress constraints: 
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where (also see Equation (1.2)): 

 . 0

0

:  Compliance

:  Initial max displacement

:  Initial max von Mises stress

, , :  User specified constants; <1; , 1

J

δ

σ

α β γ α β γ >

  (3.2) 

 Observe in Equation (3.1) that the constraints are imposed 

relative to the initial volume, displacement and stress. The 

optimization process will terminate if any of the constraints are 

violated. 

 As a special case of Equation (3.1), the classic ‘unconstrained’ 

problem with a target 0.5 volume fraction, may be imposed by 

choosing large values for  &β γ  : 
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 To solve the above problem, the pareto-curve involving the 

compliance and volume fraction is traced starting with a volume 

fraction of 1.0. For example, Figure 5 illustrates the pareto-

optimal curve and the corresponding topologies, for a specific 

instance of Equation (3.1). Tracing the pareto curve guarantees 

that the intermediate topologies are also optimal [37], ensuring 

the robustness of the algorithm. 

 

 

Figure 5: THE PARETO-OPTIMAL CURVE AND 

TOPOLOGIES.  

Constraints can be imposed as follows: 
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 The optimization process will terminate if: (1) 0.5 volume 

fraction is reached, or (2) if the displacement reaches three times 

the initial displacement, or (3) if the maximum von Mises stress 

reaches twice the initial maximum von Mises stress.  

 The second class of problems exposed in the CTO frameworks 

includes stress minimization problem, subject to similar 

constraints: 
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 In Equation (3.5), S is the p-norm von Mises stress [22], with 

the value of p-norm set to 6. Once again, to solve the above 

problem, the pareto-curve involving the p-norm stress and the 

volume fraction is traced. The two classes of problems are 

compared, for example, in [22]; illustrative case studies are 

discussed later in the paper. 

Robustness 

 As stated earlier, one of the primary reasons today for lack of 

robustness in finite element analysis is the generation of the 

underlying mesh. Despite decades of research, conforming mesh 



 

 

generation continues to be a computationally expensive and 

fragile process [45].  

 To avoid such failures, we rely here on structured meshes, also 

referred to as ‘voxels’ that can be easily computed through 

voxelization [46]. Voxel representation is robust, simple, and is 

particularly well-suited for fast FEA [43].  

 However, voxelization can lead to stress fluctuations as the 

mesh is refined, and is therefore rarely used in product 

verification, i.e., during the final stages of product design. For 

topology optimization, when product designs are being 

conceptualized, the accuracy requirements are less stringent, and 

a voxel mesh often suffices as the case studies later support. Thus, 

the advantages of voxelization far exceeds its disadvantages in 

the current context. 

Fast Finite Element Analysis 

 The primary computational bottle-neck in topology 

optimization is finite element analysis (FEA), and much of the 

computational cost lies in FEA is the solution of linear systems 

of equations.  

 Direct solvers [47] are the default choice today for solving such 

linear systems. They are robust and well-understood, and rely on 

factoring the stiffness matrix into Cholesky decomposition. 

However, due to the explicit factorization, direct solvers are 

memory intensive [48]. Since memory-access is often the bottle-

neck in computer architecture, this translates into an increased 

computational time. To avoid such bottlenecks, we resort here to 

iterative solvers that do not factorize the stiffness matrix, but 

compute the solution iteratively [49]. Further, since PareTO does 

not rely on pseudo-densities (as in SIMP), all elements are either 

‘in’ or ‘out’. This combined with pareto-tracing makes the 

stiffness matrices inherently better conditioned, leading to faster 

convergence of iterative solvers; see [50] for a comparison of 

condition numbers in SIMP and PareTO. 

 To further accelerate the iterative solution, we employ here an 

assembly-free version of the deflated conjugate gradient [44], 

[51], [52], where neither the stiffness matrix nor the deflation 

matrix is assembled. The resulting implementation is particularly 

well suited for parallelization, and can be easily ported to multi-

core CPU and GPU architectures. Since the GPU implementation 

is beneficial for problems with million degrees of freedom or 

more, it is not supported currently in the CTO framework.  

 Parallelization on the multicore Xeon CPU was attained 

through OpenMP commands (www.openmp.org). In the current 

implementation, typical FEA operation is executed in less than 3 

seconds (often less than 1 second) of server time for problems up 

to 150,000 degrees of freedom. 

Browser-Independence 

 An essential aspect of cloud-based topology optimization is the 

ability to display and manipulate 3D geometry within a browser. 

We exploit here JavaScript based WebGL (Web Graphics 

Library and ThreeJS. 

 WebGL, a technology similar to traditional desktop OpenGL, 

is a JavaScript API for rendering interactive 3D graphics within 

modern browsers. It can be mixed with other HTML elements, 

and is designed and maintained by the non-profit Khronos Group 

(www.khronos.org).  

 Since WebGL is a low-level language, ThreeJS was recently 

developed as an extension (see www.threejs.org). It provides 

high-level language constructs, for example, to transform 3D 

geometry, and is currently supported by almost all browsers 

(except for a few features in Internet Explorer).  

 ThreeJS internally represents geometry as a collection of 

triangles. A standard off-the-shelf software library (such as 

CADlook; www.cadlook.com) can be used for converting 

standard computer aided design (CAD) representations such as 

IGES into triangle-based STereoLithography (STL) 

representation.  

 Figure 6 illustrates an implementation of CTO, as viewed 

within Mozilla Firefox browser; it is currently hosted at 

www.cloudtopopt.com. 

 

 

Figure 6: WWW.CLOUDTOPOPT.COM IN MOZILLA 

FIREFOX. 

CASE STUDIES  

 The cloud based topology optimization (CTO) framework is 

illustrated here through a few case studies. The material 

properties used in all examples are those of steel, with: 
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 The server is a quad-core 3.4 GHz E3-1270 (V3) Xeon 

workstation, equipped with 8 GB of memory. On the client side, 

Mozilla Firefox, Version 34.0.5 was used for all the experiments. 

Compliance Minimization 

 The first example is that of a compliance minimization 

problem over a standard L-bracket with cross-sectional 

dimensions shown in Figure 7, and 0.006 meters thickness. The 

bracket is fixed on the top face, and a load of 5000 N is applied 

as shown. 



 

 

 

Figure 7: A STRUCTURAL PROBLEM OVER L-BRACKET. 

 The topology optimization problem is: 

 0

0

0.01 | |

2.5

1000

subject to

D
MinJ

D

Ku f

δ δ

σ σ

Ω⊂

Ω ≥

≤

≤

=

 (4.2) 

 Thus, in practical terms, a displacement constraint is imposed, 

and the topology with the lowest volume fraction is desired. The 

geometry is discretized into structured hexahedral elements 

(voxels) ranging from 5,000 to 50,000 elements, and the problem 

solved for each of the mesh sizes. The results are summarized in 

Table 1; the consistency in the computed topology can be 

observed. Thus, the computed topology is relatively insensitive 

to the voxelization error. 

 

Table 1: NUMBER OF MESH ELEMENTS, FINAL 

VOLUME FRACTION, TIME TAKEN AND COMPUTED 

TOPOLOGIES.  

Number 

of Mesh 

Elements 

Final 

Volume 

Fraction 

#FEAs and 

time taken  

Computed 

Topology 

5,000 0.28 

 

83 FEAs 

 

8.96 secs 

 

10,000 0.32  

 

82 FEAs 

 

19.4 secs 

 

15,000 0.30  

 

 

91 FEAs 

 

26.7 secs 

 

20,000 0.27  

 

89 FEAs 

 

36 secs 

 

50,000 0.29  

 

 

90 FEAs 

 

151 secs 

 

Stress Minimization 

 Next, instead of minimizing compliance, the p-norm von 

Mises stress [22] was minimized with the following constraints: 
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 Here a stress constraint is imposed, and the topology with the 

lowest volume fraction is desired. The final results for various 

mesh sizes are summarized in Table 2.  

 For stress minimization, an adjoint problem must be solved at 

each step of the optimization process, doubling the number of 

FEAs and computational cost.  

 

Table 2: NUMBER OF MESH ELEMENTS, FINAL 

VOLUME FRACTION, TIME TAKEN AND COMPUTED 

TOPOLOGIES.  

Number 

of Mesh 

Elements 

Final 

Volume 

Fraction 

#FEAs and 

time taken 

Computed 

Topology 

5,000 0.33 

 

224 FEAs 

 

13.2 secs 

 

10,000 0.38  

 

 

176 FEAs 

 

20.9 secs 

 

15,000 0.37  

 

 

194 FEAs 

 

28.8 secs 

 

20,000 0.37  

 

 

206 FEAs 

 

48 secs 

 



 

 

50,000 0.38  

 

 

203 FEAs 

 

231 secs 

 

 

Pareto Optimal Designs 

 Recall that the PareTO algorithm generates multiple topologies 

of decreasing volume fractions; such topologies can provide key 

insights to the designer. As an illustrative example, consider the 

structural problem illustrated in Figure 8a. The following 

topology optimization is posed, where the objective is to generate 

optimal topologies up to a volume fraction of 0.2, with no other 

constraint: 
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The geometry is discretized with 20,000 elements; an 

intermediate topology for a volume fraction of 0.3 is illustrated 

in Figure 8b. The final topology at a volume fraction of 0.2 is 

illustrated in Figure 8c. 

 

 

 

Figure 8: (A) THE TABLE PROBLEM. (B) TABLE DESIGN 

AT A VOLUME FRACTION OF 0.3. (C) TABLE DESIGN 

AT A VOLUME FRACTION OF 0.2. 

Draw Constraints 

 One of the options exposed in the CTO framework is the ability 

to impose ‘draw-direction’ constraint during optimization. As an 

illustrative example, consider the edge cantilever problem 

illustrated in Figure 9a (see [31] for details); the geometry is 

discretized using 20,000 elements, and the following topology 

optimization is posed: 
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 The topology computed, in 20 seconds, is illustrated in  Figure 

9b. Observe that the topology contains ‘pockets’ in the thickness 

direction. This may not be desirable in some applications. If one 

imposes a draw-direction along the thickness direction, the final 

topology, once again computed in 20 seconds, is illustrated in  

Figure 9c. 

 

 

 

Figure 9: (A) EDGE CANTILEVER PROBLEM. (B) FINAL 

TOPOLOGY WITH NO CONSTRAINTS, AT A VOLUME 

FRACTION OF 0.5. (C) FINAL TOPOLOGY WITH DRAW-

DIRECTION IMPOSED ALONG THE THICKNESS, AT A 

VOLUME FRACTION OF 0.5. 



 

 

Potential Users 

 Topology optimization brings together computer-aided-design 

(CAD) and computer-aided-engineering (CAE) users. Thus, the 

primary users of this service is envisioned to be design engineers 

who are focused on the CAD/CAE interface. The CTO 

framework will hopefully reduce the product development cycle 

time.  

 Besides, we believe CTO will address a new emerging market 

of 3-D printing. The new technology of 3D-printing (also 

referred to additive manufacturing) is revolutionizing the world 

of fabrication. The most significant benefit of 3d-printing is that 

geometric-complexity is 'free', i.e., to a large extent, it costs no 

more time or money to fabricate a very complicated part than it 

takes to fabricate a simple one. This opens new opportunities in 

product design in that one can rapidly design parts on the cloud, 

and directly fabricate these through 3d-printing. 

 For example, Figure 10 illustrates an example where a design 

was optimized using the CTO framework, and then directly 

printed on a low-cost 3D-printer.  

       
Figure 10: FROM PROBLEM SPECIFICATION OPTIMAL 

PROTOTYPE.  

Just as 3D-printing has leveled the playing-field in the world of 

manufacturing, cloud-based topology optimization will level the 

playing-field for designers.  

CONCLUSIONS 

 In this paper, we discussed various technologies that underlie 

a cloud based topology optimization framework (CTO), hosted 

at www.cloudtopopt.com. The CTO framework provides a 

simple, fast and free 3D topology optimization service, thereby 

promoting the wider use of topology optimization in product 

design.  

 Future work will focus on porting this to a high-performance 

server [53] such as Amazon Web Service (AWS), and exposing 

multi-load optimization, with buckling and modal constraints.  

 Future works will also focus on implementing cloud security 

controls (some are already in place) into the proposed CTO 

framework. We will explore the suitability of various controls 

such as: 

• Deterrent controls: These are simple controls that inform 

potential attackers of adverse consequences; these are 

obviously the first level and lowest-cost of defense. 

• Preventive controls: Preventive controls such as strong 

authentication of cloud users will make it less likely for 

unauthorized entry and access to data. SSL technology will 

be incorporated for strong authentication. 

• Detective controls: Detective controls, such as system and 

network security monitoring, will be put in place to detect 

and react rapidly to intrusions. 

• Corrective controls: Corrective controls, such as temporary 

cloud lock-down, reduce the consequences of repeated 

attacks.  
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