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ABSTRACT 

Linear buckling analysis entails the solution of a 

generalized eigenvalue problem. Popular methods for solving 

such problems tend to be memory-hungry, and therefore slow 

for large degrees of freedom.  

The main contribution of this paper is a low-memory 

assembly-free linear buckling analysis method. In particular, 

we employ the classic inverse iteration, in conjunction with an 

assembly-free deflated linear solver. The resulting 

implementation is simple, fast and particularly well suited for 

parallelization. The proposed method is used here to solve 

large scale 3D topology optimization problems subject to 

buckling constraints, where buckling problems must be solved 

repeatedly. 

INTRODUCTION 

Buckling is the sudden failure of a structural member to 

carry compressive load. For example, Figure 1 illustrates the 

classic buckling of a pinned-pinned beam. Structural elements, 

such as those found in high-rise buildings are typically 

subjected to compressive loads, and must be analyzed and 

designed to prevent such buckling failures. 

 

Figure 1 BUCKLING OF A PINNED-PINNED BEAM. 

Finite element analysis of linear buckling is typically 

carried out in two stages. In the first stage, the structural 

member is subject to a unit load.  A finite element mesh of the 

domain is constructed, and the corresponding static linear-

elasticity problem is posed and solved; this amounts to solving 

a linear system of equations:  

Kd f=   (1) 

where K is the stiffness matrix that is sparse and positive 

definite [1].  

In the second stage, the linear displacement field d is 

post-processed to obtain the stress tensor within each of the 

finite elements [1]: 

xx xy xz

elem xy yy yz

xz yz zz
elem

σ σ σ

σ σ σ σ

σ σ σ

  
 
 
  =  
 
 
 
   

  (2) 

Then the stress tensor is used to define an element-level 

stress stiffness matrix [1]: 
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where G is shape function gradient matrix described in [1]. 

This is then assembled to construct the global stress stiffness 

matrix [1]: 

( )elem

assemble

K Kσ σ= ∏      (4) 

Finally, the following generalized eigenvalue problem is 

posed and solved [1]:  

( ) 0K K wσλ+ =  (5) 

While there are multiple pairs of solutions to the above 

problem, only the lowest few are typically important. In 

particular, the lowest eigenvalue of Eqn. (5) determines the 

buckling safety factor [1], i.e., the load at which buckling will 

occur (assuming a unit load has been applied initially). The 

vector w in Eqn. (5) represents the associated buckling mode.  

The computational bottleneck in buckling analysis lies in 

solving Eqn. (1) and Eqn. (5). Typical methods to solve these 

two equations, in particular Eqn. (5), are reviewed in Section 

2. Briefly, while there are well established methods, they tend 

to be memory-hungry, leading to high computational costs for 

problems with large degrees of freedom. This is further 

exacerbated in applications such as buckling constrained 

topology optimization, where one must solve buckling 



problems repeatedly. Further, in topology optimization, the 

domain must necessarily be discretized using a large number 

of elements [2]. 

In this paper, we propose a simple inverse iteration 

driven, assembly-free deflated conjugate-gradient method for 

solving Eqn. (5); this is described in Section 3. Then, in 

Section 4, we use the proposed method to solve buckling 

constrained topology optimization problems. Conclusions and 

future work are summarized in Section 5. 

LITERATURE REVIEW 

Buckling Analysis 

As stated earlier, linear buckling analysis entails solving 

Eqn. (1) followed by Eqn. (5). We focus here on methods to 

solve Eqn. (5). Observe that this equation is similar to the 

generalized eigenvalue problem associated with modal 

analysis as described by: 

( ) 0K M wλ− =  (6) 

Thus many of the methods developed for modal analysis 

(for example, block-Lanczos) can be used to solve Eqn. (5) as 

well; see [3],[4],[5],[6]. However, there are three differences 

between Eqns (5) and (6) that should be noted:  

(1) The mass matrix M is positive definite, but the stress 

matrix Kσ need not be positive definite. 

(2) The mass matrix depends only on the material and 

the underlying mesh, while the stress matrix depends on the 

stresses as well. This has implications in assembly-free 

analysis (to be discussed in a later section). 

(3) From (2), it follows that the sensitivity expressions 

for modal and buckling are quite different (to be discussed in a 

later section). 

One of the established methods for solving the 

generalized buckling eigenvalue problem is the block-Lanczos 

algorithm [3],[5] that requires repeated solution of a linear 

system of equations where the matrix is a linear combination 

of K and Kσ that is determined dynamically.  

Since both K and Kσ are large, and since the linearly 

combined matrix is constantly changing, explicit factorization 

can be expensive. Alternative strategies use preconditioned 

iterative solver. However, these can be slow to converge, 

while accuracy is severely compromised with early 

termination [3], [7]. Alternatively, computing an approximate 

inverse over Krylov sub-space has been proposed in [7]. 

Other algorithms for solving Eqn. (5) include ‘locally 

optimal block preconditioned conjugate gradient’, ‘Davidson-

Jacobi’, etc. that have been demonstrated to be competitive for 

large-scale eigenvalue problem in [3]. One such algorithm is 

the subspace-augmented Rayleigh-Ritz conjugate gradient 

(RCG) that exploits the assembly-free aspect presented for 

solving linear systems [8]. While RCG is efficient for large-

scale modal analysis, as discussed in [9], it cannot be applied 

here effectively for reasons described later in Section 3. 

Buckling Constrained Optimization 

Topology optimization is a systematic method of 

generating designs to meet specific engineering requirements. 

It has numerous applications including optimization of aircraft 

components [10], [11], spacecraft modules [12], automobiles 

components [13], and compliant mechanisms [14]–[17]. 

In many of these applications, buckling failure must be 

accounted for during topology optimization [18], leading to a 

buckling-constrained topology optimization problem: 
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Different topology optimization methods have been 

proposed to solve such problems, including Solid Isotropic 

Material with Penalization (SIMP), evolutionary and level-set. 

SIMP uses pseudo-densities assigned to elements, and 

they vary between 0 and 1. These pseudo-densities are then 

used as continuous relaxation parameter [19]. However, when 

continuous relaxation method is used in the context of 

buckling modes, undesirable numerical effects are observed 

[20], Pedersen [21] and Neves et al. [22] discuss the spurious 

modes computed in such methods. They consider assigning 

zero stiffness to such elements to overcome these issues, but 

this results in inconsistencies in the model.  

The variability in densities from element to element also 

causes ill-conditioning of the stiffness matrices [23],[24]. 

Additionally for stress related analysis, the accuracy over gray 

elements is poor. 

As an alternative to SIMP, a free material optimization 

(FMO) was proposed in [25]. FMO considers the entire 

stiffness tensor as a continuous design variable. The sensitivity 

computation for compliance and stress field becomes more 

expensive. A binary programming method is discussed in [26], 

where the bottleneck is in computing the derivatives of 

buckling constraints. 

The other strategy for solving buckling-constrained 

topology optimization relies on defining the evolving topology 

through a level-set [27]. Level-set allows the domain to be 

well defined at all times; thus overcoming the issue of ill-

conditioned stiffness matrices.  

Numerous examples are provided in the literature to 

illustrate the effectiveness of the level set based methods 

[28],[29],[30]. In this paper, we extend the formulation for 

buckling-constraints in a semi-analytical manner. In section 4, 

we discuss the technical aspects of computing such level-set. 

ASSEMBLY-FREE BUCKLING ANALYSIS 

In the present paper, an accelerated buckling finite 

element analysis is developed by implementing and merging 

four distinct but complementary concepts (see Figure 2). Each 



of these concepts is discussed in the following sections, but 

briefly: 

1. Assembly-Free: Assembly-free finite element analysis was 

proposed by Hughes and others in 1983[31], but has 

resurfaced due to the surge in fine-grain parallelization. The 

basic concept here is that the stiffness matrix is never 

assembled; instead, the fundamental matrix operations such 

as the Sparse-Matrix Vector multiplications (SpMV) are 

performed in an assembly-free elemental level as: 

 ( )e e

assemble

Kw K w= ∏        (9) 

Assembly-free SpMV is particularly advantageous if 

memory foot-print can be reduced by storing limited data. 

Exploiting element congruency helps reduce memory 

footprint [8]. Secondly, assembly-free iterative analysis is 

effective only if an assembly-free 

acceleration/preconditioning can be exploited; here we rely 

on assembly-free deflation, discussed below.  

2. Voxelization: Voxelization is a special form of spatial 

discretization where all finite elements are identical 

hexahedral elements; the most important benefits of 

voxelization is meshing-robustness and significantly 

reduced memory foot-print, especially in conjunction with 

assembly-free analysis. This ensures a faster SpMV through 

parallel implementation on multi-core architectures.  

3. Deflation: Deflation is a powerful acceleration technique for 

conjugate gradient [32], and is more amenable to an 

assembly-free implementation, than classic preconditioners 

such as incomplete Cholesky. The particular method of 

deflation exploited in this paper is based on rigid-body 

agglomeration discussed in [33]. The rigid-body 

agglomeration has a simple assembly-free implementation 

and offers significant advantage in parallel computing [8].  

4. Inverse Iteration: Focusing specifically on buckling 

problem, we propose the use of inverse iteration for reasons 

discussed later in the paper.  

Finally, given the above infrastructure, fine-grain 

parallelization is achieved in this paper on multi-core CPUs 

using OpenMP. 

 

Figure 2: OVERVIEW OF PROPOSED METHOD. 

Voxelization 

The proposed method of assembly-free deflated 

conjugate-gradient is applicable to any finite-element 

discretization. However, in this paper, we consider a simple 

discretization, where the geometry is approximated via 

uniform hexahedral elements or ‘voxels’; the voxel-approach 

has gained significant popularity recently due to its robustness 

and low memory foot-print. The voxelization of a complex 

geometry is illustrated in Figure 3; it has over 300,000 

elements. Fortunately, even such a large-sized problem is 

easily handled via the proposed method. 

   

Figure 3: VOXELIZATION OF BATTERY HOLDER. 

The voxelization process is straight-forward, and is 

discussed, for example, in [34]. The most significant benefits 

of voxelization are: (1) it is robust in that it rarely fails (unlike 

traditional meshing), (2) the mesh storage is compact, (3) 

computational cost of voxelization is usually negligible and is 

relatively insensitive to geometric complexity, and (4) it 

promotes assembly-free-analysis. 

Assembly-Free Deflation for Static Analysis 

The first step in assembly-free buckling analysis is 

solving Eqn. (1). This is accomplished here using the deflated 

conjugate gradient method discussed in [8]. Deflated 

conjugate gradient uses several different agglomeration groups 

described in [8] to accelerate the solver. The solution of Eqn. 

(1) yields the displacement and stress fields. 

Rayleigh Ritz CG for Buckling Analysis 

As discussed in the literature review, the generalized 

eigenvalue problem for buckling is similar to modal analysis. 

Therefore, based on our earlier work [9], we attempted to use 

Rayleigh-Ritz CG (RCG) algorithm that requires repeated 

operations Kw  and K wσ .  

Unfortunately, RCG is efficient only if we can exploit 

congruency and limit the number of unique elements for both 

operations. In the case of stiffness matrix K, one can certainly 

exploit the congruency in the voxel mesh.  

However, for the stress matrix Kσ, each element’s stress 

stiffness depends on its own stress tensor. Exploiting 

congruency is therefore not an option. Furthermore, storing 

every element stress stiffness matrix Kσ will create a large 

memory footprint. This was observed to significantly slow 

down the computation. 

Inverse Iteration 

This draws attention towards another method known as 

inverse iteration [35]. The basic principle is to carry out: 



 1y K K wσ
−= −  (10) 

and recycle the solution. The number of K wσ  operations is 

considerably reduced, and the computational burden falls on 

solving an equivalent static problem [8]. 

Using inverse iteration, the algorithm to solve Eqn. (11) is 

thus: 

1. Initialize (1) 0w ≠ such that (1)|| || 1w =  

2. Set 1i =  

3. Compute ( ) ( )i iz K wσ=  

4. Solve ( 1) ( )i iK y z+ = for ( 1)iy +  

5. Update ( 1) ( 1) ( 1)/ || ||i i iw y y+ + +=  

6. Compute ( ) ( 1 ) ( 1)i i ig K w K wσ
+ += +  

7. If ( )|| ||ig ε≤ , terminate; else, increment i  , and go to 

step 3 

Once the algorithm converges to a mode shape w , the 

eigenvalue can be computed through: 

   

T

T

w Kw

w K wσ
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The number of iterations required to converge to the 

mode shape is far smaller than RCG as the numerical error is 

primarily eliminated in the linear solution in step 4.  

The numerical results in Section 5 illustrate the advantage 

of using assembly-free inverse iteration with DCG for 

buckling analysis. An efficient buckling analysis creates an 

opportunity to apply buckling constraints during topology 

optimization. We discuss the formulation in the next section. 

 

TOPOLOGY OPTIMIZATION  

Consider the structural problem illustrated in Figure 4.  

  

 

Figure 4: A STRUCTURE SUBJECT TO COMPRESSIVE 

LOAD. 

The sensitivity expression for buckling is derived, for 

example, in [36], and is given by: 

    
( )T
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w K K w
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σ
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It is assumed that the eigenvectors have been Kσ
ortho-

normalized, such that  

    1Tw K wσ− =   (13) 

Thus: 

    ( )Tw K K wσλ λ ′′ ′= −   (14) 

Unlike SIMP methods, where the sensitivity is obtained 

with respect to pseudo-density variables, here the sensitivity is 

discrete addition and subtraction of element; for example, the 

discrete sensitivity of the stiffness matrix to element deletion 

is given by: 
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where 
ek  is the elemental stiffness matrix. The second part of 

the sensitivity can be simplified using the adjoint as per the 

derivation presented in [36]. While the derivative is computed 

in [36] with respect to element density, the same can be 

extended for a discrete element variable. The element-by-

element sensitivity can be projected to the nodes to obtain a 

continuous field. 

Topological Level-set 

A straightforward approach to exploit topological 

sensitivity, is to use the information to delete elements with 

lower sensitivity values. However, this method would lead to 

same issues of creating checker board pattern and instability in 

the mesh. Sensitivity field, however, can be used as a level-set 

[2]. Consider an example of a topological sensitivity field 

illustrated in Figure 5.  

 
Figure 5: THE SENSITIVITY FIELD. 

 

Given the field and a cutting manifold corresponding to 

an arbitrary cut-off value 0.03r = , one can define a domain 
rΩ  per: 

 { | ( ) }r

j
p T p rΩ = >   (16) 

This will determine the set of points with sensitivity 

values greater than an arbitrary value of 0.03r = . The 

resulting domain is illustrated in Figure 6. 

 

(a) Topological Sensitivity field with cutting manifold 



 

(b) Domain rΩ for 0.03r =  

Figure 6: SENSITIVITY FIELD AS LEVEL SET. 

The sensitivity field provides a direct ‘pseudo-optimal’ 

domain for a specific volume reduction that can be determined 

by cutting-manifold. The computed domain, however, may not 

be optimal [2], i.e., it may not be the best possible design for 

objective function with given volume fraction. Reducing the 

volume fraction may change the sensitivity field and therefore, 

one must repeat the following steps: 1) solve the finite element 

problem over Ω  2) re-compute the sensitivity field, and 3) 

reset the cutting-manifold for desired volume fraction. 

Once convergence has been achieved for the desired 

volume fraction, one can move forward with the next step of 

volume reduction, repeating the above process. 

Algorithm 

Typically, the sensitivity field is well defined for an 

unconstrained problem. When constraints are involved, the 

sensitivity field of the objective (compliance) must be 

combined with those of the constraints (in this case, buckling) 

through weighting factors. The weighting factors are 

determined along the lines described in [37]. The complete 

algorithm is described below. 

1. The allowable domain is initialized and discretized. 

2. The initial FEA requires a static solve and a buckling 

modal analysis by solving Eqn. (1) and (5) Hence, FEA 

would refer to solving both equations. 

3. Based on the FEA, topological sensitivity for the 

objective (compliance or p-norm von Mises stress) and 

buckling are computed. 

4. Based on proximity to imposed constraints, weight 

parameters (multipliers) are computed as described in 

[37]. 

5. The desired volume fraction is used to determine the 

cutting-manifold.  

6. FEA is used to compute the constraints parameter. 

7. If constraints are met, we return to step 3 and repeat the 

process. Else, volume fraction is reduced and we return to 

step 5. 

Figure 7 illustrates the algorithm described above. 

 
Figure 7: PROPOSED ALGORITHM. 

NUMERICAL RESULTS 

In this section, we compare the results of buckling 

analysis using the proposed method, against those obtained 

through SolidWorks [38]. The material properties for all 

examples are those of steel with 112.1*10E = Pa and 0.33ν = . 

Buckling of a Square Beam 

The first example is that of a beam of 1 meter in length, 

and 10 mm by 10 mm cross-section. The beam is fixed at one 

end, and a compressive unit load is applied at the other. The 

classic fixed-free Euler-beam analysis yields a critical load of  
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The results obtained through the proposed Assembly-Free 

Buckling Analysis (AFBA) and those obtained from 

SolidWorks using the same number of degrees of freedom 

(DOF) are illustrated in Figure 8. Both methods converge to a 

critical load of 430.03. Note that we do not expect 3-D FEA 

results to converge to the exact Euler-buckling result in Eqn. 

(17) however, we do expect similar results. 

 



 

Figure 8: PREDICTED CRITICAL LOAD USING 

PROPOSED AFBA AND SOLIDWORKS. 

The real advantage of AFBA is in speed. Figure 9 

illustrates the computing time for AFBA versus SolidWorks. 

The quadratic growth in computation in SolidWorks can be 

attributed to the quadratic growth in memory consumption 

with increasing degrees of freedom. 

 

Figure 9: COMPUTING TIME FOR AFBA AND 

SOLIDWORKS. 

Buckling Analysis of Cylindrical Column 

To illustrate the potential deficiency of AFBA, we 

consider an example of a circular cylinder of 1 meter in 

length, and a diameter of 10 mm. The classic fixed-free Euler-

beam analysis yields a critical load of  
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The predicted buckling loads are illustrated in Figure 10. 

The two results differ by 2.5%. The difference can be 

attributed to the voxelization in AFBA. Local stress variation 

in the voxelized mesh is an issue that will be addressed in the 

future. 

However, for topology optimization, the relative 

sensitivity of the buckling field is of greater importance than 

the accuracy of the field per se. Further, in topology 

optimization, the domain must necessarily be discretized using 

a large number of elements [2], and thus speed becomes an 

important issue. 

 

Figure 10: ACCURACY PLOT FOR CYLINDRICAL 

COLUMN. 

The time taken to solve the problem follows a similar 

trend as illustrated in Figure 11. Thus, if one can tolerate a few 

percent error, the voxelized AFBA method can be 

significantly faster. 

 

Figure 11: COMPUTING TIME VS DOF FOR 

CYLINDRICAL COLUMN 

Buckling of a Rectangular Column with a hole 

In this example, we consider the structure shown in 

Figure 12. The dimensions of the column are 5x30x100 (mm), 

and the hole is of diameter 10 mm. 

 

 

Figure 12: RECTANGULAR COLUMN WITH HOLE. 

The results for the load factor computed using different mesh 

sizes are plotted in Figure 13. Here we observe a 0.3% error in 

the solution. The computation time is plotted in Figure 14. 



 

 

Figure 13: PREDICTED CRITICAL LOAD USING 

PORPOSED METHOD AND SOLIDWORKS FOR 

RECTANGULAR BEAM WITH HOLE. 

 

Figure 14: COMPUTING TIME FOR RECTANGULAR 

BEAM WITH HOLE 

Optimizing a Thin Column  

We now consider minimizing the volume of a thin 

column with compressive load, illustrated in Figure 15. 

Specifically, the objective is to solve the topology 

optimization problem: 
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In other words, the maximum allowable von Mises stress 

and compliance is 5 times their initial values, respectively. For 

the buckling constraint, a safety factor (SF) was prescribed 

with respect to the initial buckling load.  

 

Figure 15: THIN COLUMN WITH COMPRESSIVE LOAD 

The structure was voxelized with 500,000 DOF, and the 

time taken for buckling analysis was 46 sec. As the safety 

factor (SF) is increased in Eqn. (19), the buckling constraint 

begins to dominate, resulting in topologies illustrated in Figure 

16. 

 

a) No buckling constraint; b) SF= 1.1; c) SF = 1.5; d) SF = 2 

Figure 16: STIFF DESIGNS WITH DIFFERENT SAFETY 

FACTORS 

Further, as the safety factor is increased, the optimization 

terminates at a higher volume fraction (see Table 1), as 

expected. 

Table 1: MINIMIZING VOLUME FOR STIFF STRUCTURE 

Prescribed 

S.F. 

Final Volume 

Fraction 

Time  

(in min) 

#FEA 

0 0.3 15 64 

1.1 0.3 38.3 86 

1.5 0.42 41.5 98 

2 0.52 24 74 

 

Optimizing a Thin Plate  

The structural problem considered next is illustrated in 

Figure 17. The plate is of dimensions 100x100x10 (mm); the 

lower face is fixed while a uniform load is applied on the top. 

The topology optimization problem is defined per Eqn. (19). 



 

Figure 17: PLATE WITH COMPRESSIVE LOAD. 

The structure was again voxelized with 500,000 DOF. 

The time taken for one FEA to run including buckling analysis 

was 7.1 seconds. 

With various buckling safety factor imposed, the resulting 

topologies are illustrated in Figure 18. As one can observe, as 

the safety factor is increased, additional ribs are introduced. 

 

  

a) No buckling constraint          b) SF = 4 

  

c) SF = 7                  d) SF = 10 

Figure 18: OPTIMIZED TOPOLOGIES FOR VARIOUS 

SAFETY FACTORS. 

The final volume fractions and time taken are summarized 

in Table 2. Once again, as the buckling safety factor is 

increased, the optimization process converges to a higher 

volume fraction, as expected. 

Table 2: OPTIMIZING PLATE WITH BUCKLING 

CONSTRAINTS. 

Buckling Safety 

Factor 

Time (in 

seconds) 

Volume 

fraction 

#FEA 

No constraint 300 0.3 61 

4 432 0.35 98 

7 332 0.42 85 

10 230 0.61 62 

 

 

CONCLUSION AND FUTURE WORK 

In this paper, we proposed an assembly-free buckling 

analysis (AFBA) method that is well suited for 

computationally intensive tasks such as topology optimization. 

Future work will focus on post-buckling analysis that is 

critical for topology optimization.  
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