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Abstract  

The objective of this paper is to introduce and 
demonstrate a robust method for multi-constrained 
topology optimization. The method is derived by 
combining the topological sensitivity with the classic 
augmented Lagrangian formulation. 

The primary advantages of the proposed method are: (1) 
it rests on well-established augmented Lagrangian 
formulation for constrained optimization, (2) the 
augmented topological level-set can be derived 
systematically for an arbitrary set of loads and 
constraints, and (3) the level-set can be updated 
efficiently. The method is illustrated through numerical 
experiments. 

1. INTRODUCTION 

Topology optimization has rapidly evolved from an 
academic exercise into an exciting discipline with 
numerous industrial applications [1], [2]. Applications 
include optimization of aircraft components [3], [4], 
spacecraft modules [5], automobiles components [6], cast 
components [7], compliant mechanisms [8]–[11], etc.  
A typical single-load topology optimization problem in 
structural mechanics may be posed as (see Figure 1): 
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Figure 1: A single-load structural problem.  

A classic example is compliance minimization: 
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Similarly, a stress-constrained volume-minimization 
problem [12], [13] (with additional compliance constraint 
to avoid pathological conditions) may be posed as: 
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where: 
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A multi-constrained multi-load problem on the other 
hand, may be posed as (see Figure 2 for an example of a 
two-load problem): 
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where: 

 

:  Displacement field for load-n

:  External force vector for load-n

:  Number of loads
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Figure 2: A multi-load structural problem.  

While various methods have been proposed to solve 
specific instances of single and multi-constrained 
problems (see Section 2 for a review), the objective of this 
paper is to develop a unified method that is applicable to 
all flavors of multi-constrained problems. 

The proposed method relies on the concepts of 
topological level-set [14]–[18] and augmented Lagrangian 



[19], and it overcomes the deficiencies of existing 
methods discussed next. 

2. LITERATURE REVIEW 

Popular strategies for solving constrained topology 
optimization problems can be classified into two distinct 
types: Solid Isotropic Material with Penalization (SIMP) 
and level-set. 

Solid Isotropic Material with Penalization (SIMP) 

In SIMP, pseudo-densities are assigned to finite-
elements, and optimized to meet the desired objective 
[20]. The primary advantage of SIMP is that it is well-
understood and relatively easy to implement [20]. 
Indeed, SIMP has been applied to almost all types of 
problems ranging from fluids to non-linear structural 
mechanics problems. However, the ‘singularity-problem’ 
associated with zero-density elements require careful 
treatment, for example through epsilon-methods [21], 
[22], [23]. Secondly, the ill-conditioning of the stiffness 
matrices, due to low-density elements, can lead to high 
computational costs for iterative solvers [15], [24].   

One of the earliest implementation of SIMP for stress-
constrained topology optimization was reported in [12], 
where the authors addressed instability and singularity 
issues via a weighted combination of compliance and 
global stress measure.  

Since it is impossible to impose stress constraints at all 
points within the domain, element-stresses are typically 
lumped together into a single global quantity via the p-
norm [25], Kreisselmeier–Steinhauser function [26], or 
potentially active constraints [27], and global/local 
penalization [28]. The equivalence of these two measures 
and their justification is discussed, for example, in [29]. 
Later in this paper, we shall exploit the p-norm global 
measure. Alternately, active-set methodologies have also 
been proposed where a finite number of elements with 
the highest stress states are chosen to be active during a 
given iteration [30], [31]. 

In [32], the authors proposed a framework to design the 
material distribution of functionally graded structures 
with a tailored Von Mises stress field. In [26], the authors 
studied the weight minimization problems with global or 
local stress constraints, in which the global stress 
constraints are defined by the Kreisselmeier–Steinhauser 
function. The mixed finite element method (FEM) was 
proposed for stress-constrained topology optimization, to 
alleviate the challenges posed by displacement-based 
FEM [33].  

More recently, the authors of [34] proposed a 
conservative global stress measure, and the objective 
function was constructed using the relationship between 
mean compliance and von Mises stress; the authors used 
a SIMP-based mesh-independent framework. In [30] 
Drucker–Prager failure criterion is considered within the 
SIMP framework to handle materials with different 
tension and compression behaviors. 

Level-Set 

The second strategy for solving topology optimization 
problems relies on defining the evolving topology via a 
level-set. Since the domain is well-defined at all times, the 
singularity problem does not arise, and the stiffness 
matrices are typically well-conditioned; see [35] for a 

recent review and comparison of level-set based methods 
in structural topology optimization. 

The authors of [36] proposed a level-set based stress-
constrained topology optimization; a similar approach 
was explored in [37]. To address irregular, i.e., non-
rectangular domains, an iso-parametric approach to 
solving the Hamilton-Jacobi equation was explored by 
the authors. In the level-set implementation of [28], a 
new global stress measure was proposed. In [21], [31], the 
authors combine the advantages of level-set with X-FEM 
for accurate shape and topology optimization. The active-
set methodology with augmented Lagrangian is used to 
alleviate stress-concentrations. A topological level-set 
method for handling stress and displacement constraints 
in single-load problems was proposed in [18]. 

Multi-Load Problems 

For multi-load problems, one can either adopt a worst-
case approach or a weighted approach; these are not 
necessarily equivalent [38].  In the former, one arrives at 
a feasible but non-optimal solution. In the latter, the 
weights are subjective and difficult to establish a priori; 
the final topology will depend on the weights [20], [39], 
[40]. Additionally, due to convergence issues, 
application-specific methods have also been developed 
[41], [42]. For truss structures, an alternate approach 
based on the “envelope strain energy” was proposed in 
[43], but its advantages for continuum structures is not 
known.  

In [23], a global/regional stress measure combined with 
an adaptive normalization scheme was proposed to 
address stress constraints. A salient feature in [23] is the 
proposed adaptive stress-scaling that ensures that the 
stress constraints are met precisely at termination. 
However, methods to include additional constraints 
(example, displacement constraints) were not addressed. 

In [42], [44], [45], for multi-load problems, the authors 
propose an alternate discrete variable approach for mass 
minimization while satisfying various performance 
constraints, such as deflections, stress, etc. This has the 
advantage of synthesizing a minimum-mass solution that 
can satisfy many performance requirements. However, as 
stated by the authors [45], the underlying formulation is 
based on a heuristic. 

Multi-load problems are fairly common in compliant-
mechanism design [8], [9], [46]–[48]. Specifically, one 
must solve (at least) two problems: (1) the primary 
problem involving the external load, and (2) an auxiliary 
problem with a unit load at the ‘output’ location.  Further, 
multiple objectives must be met in the design of 
compliant mechanisms. These objectives are usually 
combined into a single weighted objective involving 
quantities such as the internal strain energy and mutual 
strain energy [8], [49]. Displacements constraints were 
included using a heuristic weighting approach [47], [50]. 
In [51], the topological level-set was exploited to solve 
multi-load problems, but the weights were once again 
determined in an ad hoc fashion.  

To summarize, while various methods have been 
proposed to solve multi-constrained topology 
optimization problems, the objective here is to develop a 
unified method, that is easy to implement, and can 
handle a variety of constraints (displacement, stress, etc.).  



3. TECHNICAL BACKGROUND 

The proposed topology optimization method is based on 
the concept of topological sensitivity that is reviewed 
next. 

3.1 Topological Sensitivity 

Topological sensitivity captures the first order impact of 
inserting a small circular hole within a domain on various 
quantities of interest. This concept has its roots in the 
influential paper by Eschenauer [52], and has later been 
extended and explored by numerous authors [53]–[57], 
[58] including generalization to arbitrary features [59]–
[61].  

Consider again the problem illustrated earlier in Figure 1. 
Let the quantity of interest be Q (example: compliance) 
that is dependent on the field u. Suppose a tiny hole is 
introduced, i.e., modifying the topology, as illustrated in 
Figure 3. The solution u from the static equilibrium 
equation and the quantity Q will change. The topological 
sensitivity (aka topological derivative) is defined in 2-D 
as: 
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Figure 3: A topological change. 
To find a closed-form expression for the topological 
sensitivity, often one relies on the concept of an adjoint. 
Recall that the adjoint field associated with a quantity of 
interest satisfies [62]–[64]: 

 
u

K Qλ = −∇  (3.2) 

The right hand side of Equation (3.2) may be symbolically 
determined (see Section 4). 

Once the adjoint is computed, the topological derivative is 
given by [65], [64]: 
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where 

 
( ) :  Stress tensor of primary field

( ) :  Strain tensor of adjoint field

uσ

ε λ
  (3.4) 

Thus, given the stress and strain field in the original 
domain (without the hole), one can compute the 
topological sensitivity over the entire domain. 

Observe that, as a special case, when TQ f u= , i.e., in the 

case of compliance, Equation (3.2) reduces to: 

 K fλ = −  (3.5) 

In other words we arrive at uλ = −  as expected, and the 

topological sensitivity reduces to [65]: 
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If the domain is discretized into 2000 elements, and a 
unit is applied, the resulting field is illustrated in Figure 
4; the magnitude of topological sensitivity field is 
normalized to 1 for convenience. In 3-D, the topological 
sensitivity field for compliance is given by [56]: 

 ( )20 : 2 3 ( ) ( )T J tr trµσ ε µ λ σ ε= − + −  (3.7) 

where µ  and λ  are the Lame parameters.  

 

Figure 4: Topological sensitivity field. 

3.2 Topological Level-set 

A simple approach to exploiting topological sensitivity in 
topology optimization is to ‘kill’ mesh-elements with low 
values. However, this leads to instability and checker-
board patterns. Alternately, the topological sensitivity 
field can be used to introduce holes during the topology 
optimization process via an auxiliary level-set [66]. Here, 
we directly exploit the topological sensitivity field as a 
level-set, as described next (also see [67]). 

Consider again the compliance field illustrated in Figure 
4; this is reproduced below in Figure 5a

 
together with a 

cutting plane corresponding to an arbitrary cut-off value 

of 0.03τ = . Given the field, and the cutting plane, one can 

define a domain τΩ  per: 

 { | ( ) }T Jp p
τ τΩ = >  (3.8) 

In other words, the domain τΩ  is the set of all points 
where the topological field exceedsτ ; the induced domain 

τΩ  is illustrated in Figure 5b. Now, the τ  value can be 
chosen such that, say, 10% of the volume is removed. It is 
observed that the elements at the left-corners, as well as 
where the force is applied have relatively high sensitivity 
values while the sensitivity values for the elements at 
right corners are relatively low. Since elements with lower 
topological sensitivity values are least critical for the 
stiffness of the structure, they are likely to be eliminated. 
In other words, a ‘pseudo-optimal’ domain has been 
constructed directly from the topological sensitivity field. 

 

(a) Compliance topological sensitivity. 



    

(b) Induced domain τΩ  for a volume fraction of 0.95 

Figure 5: Topological sensitivity field as a level-set.  
However, the computed domain may not be ‘optimal’ 
[14], i.e., it may not be the stiffest structure for the given 
volume fraction. One must now repeat the following three 

steps: (1) solve the finite element problem over τΩ  (2) re-
compute the topological sensitivity, and (3) find a new 
value of τ  for the desired volume fraction. In essence, a 
fixed-point iteration is carried out [57], [68], [15], 

involving three quantities (see Figure 6): (1) domain τΩ , 

(2) displacement fields u and v over τΩ , and (3) 

topological sensitivity field over τΩ . 

    

Figure 6: Fixed point iteration involving three quantities 
Once convergence has been achieved (in typically 2~3 
iterations), an optimal domain at 90% volume fraction 
will be obtained. An additional 10% volume can now be 
removed by repeating this process.  

Using the above algorithm, the compliance problem 
posed in Equation (1.1) can be solved, resulting in a series 
of pareto-optimal topologies illustrated in Figure 7. 
Therefore, the algorithm finds pareto-optimal solutions to 
the problem: 
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D

Min J
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Since all topologies are pareto-optimal, the constrained 
problem in Equation (1.3) is trivially solved by 
terminating the algorithm when the desired volume 
fraction has been reached.  

 
Figure 7: Pareto-optimal topologies 

Observe that the above “PareTO” method is applicable to 
other objective functions (besides compliance) by 
replacing the compliance topological sensitivity field with 
the appropriate topological sensitivity field. 

4. PROPOSED METHOD  

The objective of this paper is to extend the above PareTO 
method to include arbitrary constraints, and multi-loads. 

4.1 Augmented Lagrangian Method 

Towards this end, consider the classic continuous-
variable constrained optimization problem: 
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Observe that this is a continuous variable problem 
involving a continuous variable x , as opposed to a 
topology optimization problem. One of the most popular 
methods for solving such problems is the augmented 
Lagrangian method, also referred to as the “Method of 
Multipliers” [19]. Since the augmented Lagrangian 
method is well established, we only provide a brief 
summary of the method.  

In this method, the objective and the constraints are 
combined into a single unconstrained function, referred 
to as the augmented Lagrangian: 
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where 
i
µ are the Lagrangian multipliers and 

i
γ   are the 

penalty parameters. The theory underlying the above 
definition is discussed, for example, in [69].   

The Lagrangian multipliers and penalty parameters are 
initialized to an arbitrary set of positive values. Then, the 
Lagrangian in Equation (4.2) is minimized, typically via 
nonlinear conjugate gradient.  

Towards this end, note that the gradient of the 
augmented Lagrangian is given by: 

  
1

( , , ) ( , , )
m

i

i

L x f L xµ γ µ γ
=

∇ = ∇ − ∇∑  (4.4) 

where 

( )       ( ) 0
( , , )

0                       ( ) 0
i i i i i i i

i

i i i

g g g x
L x

g x

µ γ µ σ
µ γ

µ σ

 − ∇ − >∇ = 
 − ≤

 (4.5) 

Once the minimization terminates, the Lagrangian 
multipliers are updated as follows [69]: 
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where the ˆkx is the minimum at the (current) k iteration. 
The penalty parameters are also updated: 
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where 0 1ς< <  and 0η > ; typically 0.25ς = and 

10η = . The updates ensure rapid minimization of the 

objective, while satisfying the constraints. 

The augmented Lagrangian is once again minimized and 
cycle is repeated until the objective cannot be reduced 
further. The implementation details and the robustness of 
the algorithm are discussed, for example, in [19], [69]. 

4.2 Augmented Topological Level-Set 

Now consider the topology optimization problem: 
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The goal is to extend the classic augmented Lagrangian 
method to solve the above problem. Drawing an analogy 
between Equations (4.1)  and (4.8), we define the 
topological augmented Lagrangian as follows: 
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In classic continuous optimization, the gradient was 
defined with respect to the continuous variable x . Here, 
the gradient is defined with respect to a topological 
change. Drawing an analogy to the gradient operator in 
Equation (4.4), we propose the following topological 
gradient operator: 
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where  

 ( )
i
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are the topological level-sets associated with each of the 
constraint functions. Observe that we have essentially 
combined various topological level-sets into a single 

topological level set. The multipliers and penalty 
parameters are updated as described earlier. 

The above concept easily generalizes to multi-load 
constrained topology optimization problem: 
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in that the augmented Lagrangian is now defined as: 
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Thus, the only difference is that the constraint and 
objective depend on multiple displacement fields.  

4.3 Illustrative Examples 

Before we discuss implementation details, a few examples 
are provided to illustrate the concept of the augmented 
topological level-set. 

Displacement Constraint at a Point 

Consider the single-load problem posed in Figure 8, 
where a y-displacement constraint is imposed at point q. 
The objective is to minimize volume fraction, denoted by 

Ω , subject to a displacement constraint at a point. 
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Figure 8: A single-load problem with displacement 
constraint.  

First consider the objective function. It follows from 
Equation (3.1) that: 
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Next consider the displacement constraint. Since the 
point of interest does not coincide with the point of force-
application, we first pose and solve an adjoint problem: 

 ˆ ( )
y

K qλ δ= −  (4.18) 

i.e., an auxiliary problem must be solved (see Figure 9). 

 

Figure 9: An auxiliary problem must be solved to obtain 
the adjoint. 

Once the adjoint is obtained, the topological sensitivity of 
the constraint is obtained as usual via:  
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Therefore, the combined topological level-set is given by: 
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Global p-norm Stress Constraint 

Now consider a global stress constraint: 
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where the global stress is defined by weighting the von 
Mises stresses over all elements via the popular p-norm: 
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Computing the adjoint and the gradient of this global 
constraint is described in [18]. Once the adjoint has been 
computed, the topological level-set is defined as in 
Equation (4.19), followed by the augmented level-set as in 
Equation (4.20). 

Multi-load Displacement Constraint 

As an example of a multi-load problem, consider Figure 
10, where the objective is to minimize volume such that 
the y-displacement at point q does not exceed a 
prescribed value under two different load conditions, i.e., 
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Figure 10: A multi-load problem with displacement 
constraint.  

Three different topological sensitivity fields must be 
computed. As before, the field associated with the 
objective is: 

 1T
ϕ
= −  (4.25) 

Next, since the constraint is applied at point q, a unit load 
is used to construct a single adjoint field per Equation 
(4.18). Given the two displacements fields and the adjoint 
fields, the remaining two topological sensitivity fields are 
computed as follows: 
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4.5 Proposed Algorithm 

The overall algorithm is illustrated in Figure 11, and 
described below. 

1. The domain, desired volume fraction are initialized as 
described earlier. The relative volume decrement v�  is 

initialized to 0.025, and 
min
v�  is set to 0.0025. The 

Lagrangian multipliers are initialized as follows: 
0 1
i

µ =  and 0 10
i

γ = .   

2. Multiple FEAs are performed depending on the number 
of loads and adjoint problems. 

3. The constraints are evaluated, and the multipliers and 
penalty parameters are updated. 

4. If the constraints are satisfied proceed to step-5, else 
proceed to step-9.  

5. The topological sensitivity fields for the objective and 
constraints are computed, and the augmented 
topological level-set is extracted. 

6. The iso-surface for the current volume fraction is 
extracted.  

7. If the relative compliance change is smaller than 0.01, 
it is assumed that the process step converged. If so, 
then proceed to step-8, else return to step-2. 

8. The next target-volume is decremented; if the desired 
volume has been reached the algorithm terminates, else 
it returns to step-2. 

9. If the volume decrement is too small the algorithm 
terminates, else algorithm returns to step-2.

 1 



 1 

Figure 11: Proposed algorithm.2 

5. NUMERICAL EXAMPLES  3 

In this Section, we demonstrate the proposed method 4 

through numerical experiments. The default material 5 

properties are 112*10E =  and 0.33ν = . All experiments 6 

were conducted using Matlab 2013a on a Windows 7 64-7 

bit machine with the following hardware: Intel I7 960 8 

CPU quad-core running at 3.2GHz with 6 GB of memory. 9 

Four-noded quadrilateral finite elements are used in all 10 

experiments. All constraints are relative to the initial 11 

displacement and stresses, prior to optimization. Thus, a 12 

constraint: 13 

 ( ) 3.0 0
y
u q − ≤  (5.1) 14 

implies that the y-displacement at point q must not 15 

exceed three times the initial y-displacement at that 16 

point, prior to optimization. The constraint: 17 

 2.0 0σ− ≤  (5.2) 18 

implies that the maximum von Mises stress must not 19 

exceed twice the maximum von Mises stress prior to 20 

optimization.  21 

5.1 Condition Number  22 

First, we illustrate one of the primary advantages of the 23 

proposed method by studying the condition number of 24 

the underlying stiffness matrix. Specifically, we consider 25 

the compliance minimization problem over the L-bracket 26 

in Figure 12 subject to a simple volume constraint:  27 
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 29 

Figure 12: The L-bracket problem. 30 

The L-bracket was meshed with 2000 elements (see 31 

Figure 13a); the final topology, with a desired volume 32 

fraction of 0.5 is illustrated in Figure 13b. 33 

 34 

Figure 13: (a) L-bracket with 2000 elements, and (b) final 35 

topology. 36 

In the proposed method, the pareto-curve is traced at all 37 

times, i.e., the intermediate topologies are pareto-optimal 38 

[14]. Consequently, the load is never disconnected from 39 



the support, and the underlying linear system remains 1 

well conditioned (the void elements do not lie on the 2 

load-path). Indeed, as one can observe in Figure 14 the 3 

condition number remains below 106. 4 

 5 

Figure 14: Condition number of stiffness matrix in 6 

proposed method as a function of FE iterations. 7 

We solved the above problem using SIMP to arrive at the 8 

same final topology, using approximately the same 9 

number of finite element operations (to be consistent). 10 

Since SIMP relies on pseudo-densities, the condition 11 

number increases during the optimization process (as 12 

noted by several authors [15], [24]). This can be observed 13 

in Figure 15. If direct solvers are used, large condition 14 

numbers are typically not a problem. However, if iterative 15 

solvers are used (as is essential in large-scale 3D 16 

problems [15]), large condition numbers can lead to 17 

computational bottlenecks. 18 

 19 

Figure 15: Condition number of stiffness matrix in SIMP 20 

as a function of FE iterations. 21 

The computational costs also depends on the total 22 

number of finite element operations. In a later example, 23 

we will study the impact of constraints on the number of 24 

finite element operations. 25 

5.2 Mesh Independency  26 

Next we consider the effect of mesh size on the final 27 

topology; the classic L-bracket problem (see Figure 12) is 28 

once again used as an example. A displacement constraint 29 

at the point of force-application, and a global stress 30 

constraint are imposed as follows (the constraints are 31 

non-dimensionless as noted in Equations (5.1) and (5.2)): 32 

 2.5 0

1000 0

D

y

Min

u

σ

Ω⊂
Ω

− ≤

− ≤

 (5.4) 33 

The L-bracket was discretized by elements ranging from 34 

2000 to 10000; a particular instance with 2000 finite 35 

elements is illustrated in Figure 13a. 36 

The classic radial filtering scheme [20] with a radius of 37 

0.05 was used to smoothen the topological sensitivity 38 

field. For various mesh densities, the final volume 39 

fraction and final topologies are summarized in Table 1. 40 

Observe that neither the final volume fraction and nor the 41 

optimal topology is sensitive to the mesh-size.  42 

Table 1: Mesh densities and final topologies. 43 

 44 

Mesh 
Densities 

Volume 
Fraction 

Final Topologies 

2000 0.31 

 

4000 0.30 

 

8000 0.31 

 

10000 0.31 

 

 45 

5.3 Impact of Constraints on Final Topology 46 

The problem in Equation (5.4) was generalized as follows:  47 

 max

max

0

0

D

y

Min

u δ

σ σ

Ω⊂
Ω

− ≤

− ≤

 (5.5) 48 

The specific constraints and the final results are 49 

summarized in Table 2. Note that since stress is imposed 50 

as a constraint, an adjoint problem must be solved; this 51 

immediately doubles the number of FEAs required, 52 

compared to the compliance minimization problem. 53 

One can observe that, if the displacement constraint is 54 

active (identified with a box), the topology corresponds to 55 



the classic ‘compliance-minimization’ problem, and if the 1 

stress constraint is active, the topology is consistent with 2 

those reported in the literature [18], [25]. Further, as one 3 

can expect, the total number of finite element operations 4 

increases compared to the classic compliance 5 

minimization problem of Figure 14. 6 

Table 2: Constraints and results for problem in Figure 12 7 

 8 

Constraints Final 
Volume 
Fraction 

Final 
displacements 

Final 
Topologies 

#FEAs 

max

max

1000

1.5

δ

σ

=

=
 

0.34 2.55

1.50

result

J

result

δ

σ

=

=
 

 

#FEAs = 240 

max

max

1.5

1000

δ

σ

=

=
 

0.49 
1.50

1.14

result

result

δ

σ

=

=
 

 

#FEAs = 194 

max

max

1.5

1.1

δ

σ

=

=
 

0.53 
1.50

1.09

result

result

δ

σ

=

=
 

 

#FEAs = 202 

5.4 Multi-load, Multi-Constraint  9 

In this experiment, we consider the structure in Figure 16 10 

subject to multi-load, with the constraints as follows: 11 

 

max

1 1

max

1 1

max

2 2

max

2 2

0

0

0

0

D

y

x

Min

u

u

δ

σ σ

δ

σ σ

Ω⊂
Ω

− ≤

− ≤

− ≤

− ≤

 (5.6) 12 

The displacement constraints are imposed at the point of 13 

the force-application, and the stress constraints are global 14 

p-norm stress measure. 15 

 16 

Figure 16: A multi-load L-bracket problem. 17 

Depending on the specific constraints, different 18 

topologies are obtained as summarized in Table 3. 19 

Table 3: Constraints & results for problem in Figure 16. 20 

Constraints Final 
displacements 

Final Topologies 

max

1

max

2

max

1

max

2

1.5

10000

10000

10000

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

1.50

5.37

1.17

2.80

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 

 

V=0.50 

max

1

max

2

max

1

max

2

10000

1.5

10000

10000

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

26.44

1.50

10.89

1.29

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 

 

V=0.34 

max

1

max

2

max

1

max

2

10000

10000

1.5

10000

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

2.47

42.79

1.50

7.87

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 

 

V=0.34 

max

1

max

2

max

1

max

2

10000

10000

10000

1.5

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

68.01

2.40

16.78

1.50

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 

 

V=0.23 

max

1

max

2

max

1

max

2

1.50

1.50

1.50

1.50

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

1.50

1.37

1.20

1.16

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 

 

V=0.61 

5.5 Multiple Displacement Constraints 21 

This experiment involves the classic 2-D cantilever beam 22 

illustrated in Figure 17. Two displacement constraints are 23 

imposed: one at the point of force application, and the 24 

other at a point of interest ‘q’ located in the middle of the 25 

top edge: 26 

 max

max

( ) 0

( ) 0

D

y q

y a

Min

u q

u a

δ

δ

Ω⊂
Ω

− ≤

− ≤

 (5.7) 27 

 28 

Figure 17: A single load cantilever beam problem. 29 

Specific values for the allowable relative displacements at 30 

both points of interest are specified in Table 4. For FEA, 31 

the domain was discretized into 2000 elements, as 32 

illustrated in Figure 18. 33 



 1 

Figure 18: Finite element mesh for a cantilever beam. 2 

The final volume fractions, the final relative 3 

displacements, and the final topologies are illustrated in 4 

Table 4. The active constraints for each of the test cases is 5 

identified with a ‘box’; observe that, at least one of the 6 

constraints is active at termination. 7 

Table 4: Constraints and results for problem in Figure 11. 8 

Constraints Final 
Volume 
Fraction 

Final 
displacements 

Final Topologies 

max

max

10.00

1.50

a

q

δ

δ

=

=
 

0.48 1.75

1.50

result

a

result

q

δ

δ

=

=
 

 

max

max

1.50

10.00

a

q

δ

δ

=

=
 

0.55 
1.50

1.63

result

a

result

q

δ

δ

=

=
 

 

max

max

1.50

1.50

a

q

δ

δ

=

=
 

0.56 
1.50

1.40

result

a

result

q

δ

δ

=

=
 

 

5.6 Multi-load 9 

We now consider a multi-load problem illustrated in 10 

Figure 19. The displacement constraint for each load is 11 

placed at the point of force application, i.e., the problem 12 

is: 13 

 max

1 1

max

2 2

0

0

D

y

x

Min

u

u

δ

δ

Ω⊂
Ω

− ≤

− ≤

 (5.8) 14 

 15 

Figure 19: A multi-load cantilever beam problem. 16 

The specific constraints and the final results are 17 

summarized in Table 5. Observe that the final topology is 18 

strongly dependent on the constraints. 19 

Table 5: Constraints and results for problem in Figure 19. 20 

Constraints Final 
Volume 
Fraction 

Final 
displacements 

Final 
Topologies 

max

1

max

2

1.50

50.00

δ

δ

=

=
 

0.59 
1

2

1.50

1.47

result

result

δ

δ

=

=
 

 

max

1

max

2

50.0

1.50

δ

δ

=

=
 

0.48 
1

2

5.87

1.50

result

result

δ

δ

=

=
 

 

max

1

max

2

1.50

1.50

δ

δ

=

=
 

0.62 
1

2

1.50

1.36

result

result

δ

δ

=

=
 

 

5.5 Multi-load, Multi-Constraint  21 

We now solve the multi-load, multi-constraint problem 22 

posed in Equation (5.6) over the classic Mitchell bridge 23 

structure in Figure 20. The domain is discretized into 24 

2000 quadrilateral elements. 25 

 26 

Figure 20: A multi-load Mitchell bridge problem. 27 

 28 

The results are summarized in Table 6. 29 

 30 

Table 6: Constraints & results for problem in Figure 20. 31 

 32 

Constraints Final 
displacements 

Final Topologies 

max

1

max

2

max

1

max

2

1.50

10.00

10.00

10.00

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

1.50

1.32

1.04

1.03

result

result

result

result

δ

δ

σ

σ

=

=

=

=

  

V=0.51 

max

1

max

2

max

1

max

2

10.00

1.50

10.00

10.00

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

2.77

1.50

1.89

1.09

result

result

result

result

δ

δ

σ

σ

=

=

=

=

  

V=0.40 

max

1

max

2

max

1

max

2

10.00

10.00

1.50

10.00

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

4.12

3.18

1.50

1.22

result

result

result

result

δ

δ

σ

σ

=

=

=

=

  

V=0.21 

max

1

max

2

max

1

max

2

10.00

10.00

10.00

1.50

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

5.68

4.15

2.05

1.47

result

result

result

result

δ

δ

σ

σ

=

=

=

=

  

V=0.16 

max

1

max

2

max

1

max

2

1.50

1.50

1.50

1.50

δ

δ

σ

σ

=

=

=

=

 

1

2

1

2

1.50

1.36

1.03

1.01

result

result

result

result

δ

δ

σ

σ

=

=

=

=

 
 

V=0.51 



6. CONCLUSIONS 1 

The main contribution of the paper is a new method for 2 

multi-constrained topology optimization, where the 3 

topological sensitivity field for each of the loading, and 4 

each constraint is computed, and then combined via 5 

augmented Lagrangian methods. This is then exploited to 6 

generate a set of pareto-optimal topologies. As illustrated 7 

via numerical examples, the proposed not only generates 8 

topologies consistent with those published in the 9 

literature, but provides solutions to more challenging 10 

problems that have not been considered before.  11 
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