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Abstract  

Large-scale finite element analysis with millions of degrees of freedom is becoming 
commonplace in solid mechanics. The primary computational bottle-neck in such problems is 
the solution of large linear systems of equations.  

In this paper, we propose an assembly-free version of the deflated conjugate gradient (DCG) 
for solving such equations, where neither the stiffness matrix nor the deflation matrix is 
assembled. While assembly-free FEA is a well-known concept, the novelty pursued in this 
paper is the use of assembly-free deflation. The resulting implementation is particularly well 
suited for large-scale problems, and can be easily ported to multi-core CPU and GPU 
architectures. For demonstration, we show that one can solve a 50 million degree of freedom 
system on a single GPU card, equipped with 3 GB of memory. 

The second contribution is an extension of the “rigid-body agglomeration” concept used in 
DCG to a “curvature-sensitive agglomeration”. The latter exploits classic plate and beam 
theories for efficient deflation of highly ill-conditioned problems arising from thin structures.  

 

1. INTRODUCTION 

Finite element analysis (FEA) is a popular 
numerical method for solving solid 
mechanics problems. For large scale 
problems, the main computational bottle-
neck in FEA is the solution of linear systems 
of equations of the form: 
 Kd f=  (1.1) 

Henceforth, the matrix K will be referred to 
as the stiffness matrix, and it is assumed to 
be sparse and positive definite. Direct solvers 
[1] are the default choice today for solving 
such linear systems. Direct solvers are robust 
and well-understood, and rely on factoring 
the stiffness matrix into a Cholesky 
decomposition: 

 TK LL=   (1.2) 

This is followed by a triangular solve: 

 1( )Td L L f− −=  (1.3) 

However, due to the explicit factorization, 
direct solvers are memory intensive [2]. To 

quote the ANSYS manual [3], “[sparse direct 
solver] is the most robust solver in ANSYS, 
but it is also compute- and I/O-intensive”. 
Specifically, for a matrix with one million 
degrees of freedom (DOF) [3]: 
• Approximately 1 GB of memory is 
needed for assembly. 

• However, 10 to 20 GB additional 
memory is needed for factorization. 

Since memory-access is the bottle-neck in 
computer architecture, this translates into an 
increased wall-clock time.  

Large-scale FEA problems with millions of 
degrees of freedom (DOF) are becoming 
commonplace in solid mechanics; examples 
include multi-scale analysis [4], analysis of 
micro-CT data [5], and analysis of voxelized 
geometry [6]. Indeed, in some instances, 
linear systems with billions of DOF must be 
solved [5]. Direct solvers are ill-suited for 
such problems. 



   

Instead, one must resort to iterative solvers 
that do not factorize the stiffness matrix, but 
compute the solution iteratively [7]. In 
iterative solvers, the main computational 
issues are: 

1. Efficient implementation of sparse 

matrix-vector multiplication (SpMV). 

2. Accelerating the iterative solver either 

through an efficient preconditioner 

and/or through multi-grid/deflation 

techniques. 

Methods to increase the efficiency of SpMV 
(see [8] for a review) include profile and 
band-width reduction, efficient storage 
techniques, graph-theoretic optimization 
and specialized octree data-structures. In 
addition, implementation of SpMV on 
graphics-programmable units (GPUs) has 
drawn considerable attention [9], [10].  

In this paper, we shall exploit element-
congruency and assembly-free methods to 
reduce memory usage, and to accelerate 
SpMV and CG-iterations, both on the CPU 
and GPU. Assembly-free SpMV for large-
scale finite element analysis on the GPU was 
recently proposed in [11], but element-
congruency was not exploited. 

2. LITERATURE REVIEW  

Since the stiffness matrices considered in 
this paper are symmetric positive definite, 
the conjugate gradient (CG) is the focus of 
this paper [7]. As is well known [2], [7], [12], 
CG’s convergence can be poor if the stiffness 
matrix exhibits high condition number, or if 
the eigen-values of the stiffness matrix are 
spread out. In solid mechanics, poor 
convergence of CG is fairly common [2], for 
example, in the analysis of composite 
materials, thin structures, multi-scale 
problems, etc.  

Acceleration of CG, i.e., reduction in the 
number of iterations, is usually achieved 
through a combination of preconditioners, 
multi-grid methods and deflation 
techniques. 

2.1 Preconditioners 

One of the oldest preconditioners is the 
Jacobi preconditioner; it does not require the 
assembly of the stiffness matrix, and is 
therefore scalable and easily parallelizable. 
But it is not very effective for many ill-
conditioned problems in solid mechanics [2]; 
this is confirmed later through numerical 
experiments. Other preconditioners such as 
Gauss-Seidel and SSOR perform better than 
Jacobi, but have similar limitations. 

The incomplete Cholesky (IC) is perhaps the 
most robust and efficient preconditioner 
[13], [14]. It relies on an approximate 
Cholesky factorization (see Equation (1.2)) 
where, for example, the lower-triangular 
matrix L is forced to have the same sparsity-
pattern as K. Unfortunately, constructing 
this preconditioner requires assembly of the 
stiffness matrix. Further, while efficient 
implementations of IC exist for single core 
systems, these are not easily portable to 
multi-core architectures [5]. 

2.2 Multi-Grid Methods 

Multi-grid methods are gaining popularity 
for both theoretical and practical reasons. 
The basic concept behind a two-level 
geometric multi-grid method is illustrated in 
Figure 1. During a conjugate gradient 
iteration, the residual over a ‘fine-mesh’ is 
restricted to a coarse-level through a grid 
transfer. This is then smoothened at the 
coarse level, and prolonged back to the finer 
level [15], [16]. This accelerates the 
convergence of CG, and can be easily 
generalized to multiple levels for optimal 
convergence. 

 
Figure 1: A two-level geometric multi-grid. 

In the algebraic multi-grid method [17], 
[18], the restriction and prolongation 



   

operators are constructed in an algebraic 
fashion, rather than through a geometric 
mesh transfer. The properties and 
performance are similar to that of the 
geometric multi-grid. 

Multi-grid methods can be implemented in 
an assembly-free manner resulting in a low 
memory foot-print. This was explored by 
Arbenz and colleagues for large-scale solid 
mechanics problems [5]. While multi-grid 
methods perform particularly well for scalar 
problems and solid mechanics (vector) posed 
over ‘thick solids’, they are prone to Poisson 
locking and ill-conditioning for problems 
posed over ‘thin solids’ [19] and composite 
materials [20]. 

Improvements over the multi-grid method 
for thin structures were proposed in [19], 
[21], [22], where lower-dimensional models 
were used instead of coarse-meshes, thus 
avoiding the locking issue. Here, we explore 
deflation techniques that can address these 
issues in a unified manner. 

2.3 Deflation  

The concept behind deflation [23] is to 
construct a matrix W , referred to as the 
deflation space, whose columns 
‘approximately’ span the low eigen-vectors of 
the stiffness matrix.  

Since computing the eigen-vectors is 
obviously expensive, Adams and others [12] 
suggested a simple agglomeration technique 
where finite element nodes are collected into 
small number of groups. For example, Figure 
2 illustrates agglomeration of the finite 
element nodes into four groups. 

 
Figure 2: (a) Finite element mesh, (b) 
agglomeration of mesh nodes into four 

groups. 

Then, to construct the W  matrix, nodes 
within each group are collectively treated as 
a rigid body. The motivation is that these 

agglomerated rigid body modes mimic the 
low-order eigen-modes. Thus, for small 
rotations, the displacement of each node 
within a group can be expressed as: 

 

1 0 0 0

0 1 0 0

0 0 1 0
g

u z y

v z x

w y x

λ

     −       = −          −     

     (2.1) 

where  

 { }0 0 0
, , , , ,

T

g x y z
u v wλ θ θ θ=    (2.2) 

are the six unknown rigid body motions 
associated with the group, and ( , , )x y z  are 

the relative coordinates of the node with 
respect to the geometric center of the group. 
Observe that Equation (2.1) is essentially a 
restriction operation similar to that of multi-
grid. Indeed, the concept of using rigid-body 
modes has been explored in the context of 
multi-grid methods as well [17], [24]. 

Once the mapping in Equation (2.1) is 
constructed for all the nodes, these can be 
‘assembled’ to result in a deflation matrix W : 

 d Wλ=       (2.3) 

where d  is the 3N degrees of freedom, λ  is 
the 6G degrees of freedom associated with 
the groups. One can now exploit the W  
matrix to create the deflated conjugate 
gradient (DCG) algorithm described below 
(see [23] for a derivation and theoretical 
analysis): 

Algorithm: Deflated CG (DCG); solve 
Kd f=  

1. Construct the deflation space W  

2. Choose 
0
d  where 

0
0TW r =  & 

0 0
r f Kd= −  

3. Solve 
0 0

T TW KW W Krµ = ; 

0 0 0
p r Wµ= −  

4. For 1,2,..., ,j m= d0: 

5.      1 1

1

1 1

T

j j

j T

j j

r r

p Kp
α

− −

−

− −

=  



   

6.      
1 1 1j j j j

d d pα
− − −

= +  

7.      
1 1 1j j j j

r r Kpα
− − −

= −  

8.      
1

1 1

T

j j

j T

j j

r r

r r
β
−

− −

=  

9.      Solve T T

j j
W KW W Krµ =  for µ  

10.      
1 1j j j j j

p p r Wβ µ
− −

= + −  

11. End-do 

When N >> G, i.e., when the number of 
mesh nodes far exceeds the number of 
groups: 

• Within the DCG iteration, the primary 

computation is the sparse matrix-vector 

multiplication (SpMV) Kx  in steps 5 and 9.  

• Additional computations include the 

restriction operation TW x  in step 9, the 

prolongation W µ  in step 10, and the 

solution of the linear system 

( )TW KW yµ =  in step 9.  

The one-time coarse matrix TW KW  
construction in step 3 can be viewed as a 
series of SpMV, followed by a series of 
restriction operations, and can be significant. 
Observe that the deflation matrix is also 
sparse; this is exploited later on for 
assembly-free implementation of DCG. 

The optimal number of groups depends on 
the number of low order eigen-modes [2]. 
Later, we shall study the impact of group size 
on the computational time.  

Next, we propose an improvement over the 
aforementioned rigid-body agglomeration, 
specifically for thin structures. Thin 
structures find a wide variety of applications 
across many disciplines including civil, 
automotive, aerospace, MEMS, etc., and 
efficient solution of solid mechanics 
problems over such structures is of 
significant importance. 

3. THIN STRUCTURES 

3.1 Motivation 

The rigid-body agglomeration is very 
effective in capturing the low-order eigen-
modes of ‘thick’ solids such as the ones in 
Figure 3. 

 
Figure 3: Example of ‘thick’ solids. 

On the other hand, consider the ‘thin’ solids 
in Figure 4; the low order eigen-modes of 
such solids are significantly different from 
that of the thick solids in that the curvature 
effects are not negligible. 

 

 
Figure 4: Examples of ‘thin’ solids. 

This is illustrated schematically in Figure 5; a 
large number of groups will be required to 
effectively capture these modes through 
rigid-body agglomeration. An alternate 
concept is proposed next. 

 
Figure 5: Curvature effects in thin 

structures. 

3.2 Curvature-Sensitive Deflation  

The proposed concept is to append the rigid 
body deflation in Equation (2.1) with 



   

additional curvature variables. Specifically, 
consider a thin plate whose smallest 
dimension is in the z-direction. Equation 
(2.2) is extended as follows:  

{ }0 0 0 , , ,
, , , , , , , ,

T

g x y z xx yy xy
u v w w w wλ θ θ θ=       (3.1) 

Exploiting Kirchoff-Love theory for thin 
plates [25], the nodal displacement is then 
expressed as: 

 
n g

u

v W

w

λ

      = 
     

      (3.2) 

where 

2 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0
2 2

n

z y zx zy

W z x zy zx

x y
y x xy

   − − −    = − − −     −  

 (3.3) 

Equation (3.3) will be referred to as 
“Kirchhoff-Love” agglomeration. 

A similar approach can be used to construct 
the deflation space for beam-problems. 
Unlike a thin plate, the curvature of the 
beam varies only along one major axis. 
Exploiting Euler-Bernoulli theory, the group 
variables are: 

 { }0 0 0 ,
, , , , , ,

T

g x y z xx
u v w wλ θ θ θ=          (3.4) 

and: 

2

1 0 0 0

0 1 0 0 0

0 0 1 0
2

n

z y zx

W z x

x
y x

   − −    = −     −  

 (3.5) 

Equation (3.5) will be referred to as “Euler-
Bernoulli” agglomeration. 

4. LIMITED-MEMORY ASSEMBLY-
FREE DCG 

In this section, we consider a limited-
memory assembly-free implementation of 
the deflated conjugate gradient. The 
proposed implementation is applicable to 

both rigid-body and curvature-sensitive 
agglomeration. The focus of this Section is 
on a CPU implementation; GPU 
implementation is discussed in Section 5. 

4.1 Assembly-Free FEA  

Assembly-free finite element analysis was 
proposed by Hughes and others in 1983 [26], 
but has resurfaced [6] due to the surge in 
fine-grain parallelization.  

The basic concept here is that the stiffness 
matrix is never assembled; instead, the 
fundamental matrix operations such as the 
SpMV are performed in an assembly-free 
elemental level. In other words, instead of 
the classic “assemble and then multiply”: 

 
e

assemble

Kx K x
     
∏�  (4.1) 

the strategy is to “multiply and then 
assemble”: 

 ( )e e
assemble

Kx K x∏�  (4.2) 

However, assembly-free analysis is not 
particularly advantageous over classic 
‘assembled’ approach unless: (1) the total 
memory consumption can be reduced, and 
(2) CG can be accelerated in an assembly-
free mode. In the remainder of this paper, we 
show how both of these can be achieved.  

Much of the memory access in deflated 
conjugate gradient comes from 
storing/retrieving the stiffness and deflation 
matrices. These can be dramatically reduced 
if mesh-congruency can be exploited, as 
explained in the next Section.  

4.2 Exploiting Mesh Congruency  

The premise here is that in large-scale 
meshes, significant number of elements 
tends to be geometrically congruent. For 
example, consider the finite element mesh of 
a composite specimen [27] in Figure 6, 
consisting of about 83000 elements; the 
mesh was generated using ANSYS.  



   

 
Figure 6: Congruency in a finite element 

mesh. 

Through a simple congruency check [6], one 
can determine that the mesh contains only 
322 distinct elements, i.e., less than 0.4%, 
are geometrically and materially distinct; 
these are located near the notch as illustrated 
in Figure 7. 

 
Figure 7: Most of the distinct elements are 

localized. 

Observe that congruent elements will yield 
identical element stiffness matrix. Thus, in 
an assembly-free mode, only the distinct 
element stiffness matrices need to be 
computed and stored. This dramatically 
reduces the memory foot-print, and 
accelerates SpMV. 

4.3 Mesh Partitioning  

Focusing now on deflation, the first step is 
agglomeration, i.e., collection of mesh-nodes 
into a small number of groups. The groups 
are created by partitioning mesh with 
contiguous bounding boxes, and nodes are 
assigned to respective boxes, and empty 
boxes are eliminated. Figure 8a illustrates a 
finite element mesh with 50,000 nodes, 
while Figure 8b illustrates agglomeration of 
these nodes into 32 groups, and Figure 8c 
illustrates agglomeration into 64 groups. 

  
(a) Finite element mesh.    

  

(b) Partitioning into 32 groups.     

 
 (c) Partitioning into 64 groups. 

Figure 8: Partitioning mesh-nodes into 
groups. 

4.4 Assembly-Free Deflation  

Just as the stiffness matrix is never 
assembled to carry outKx , the deflation 
matrix W  need not be assembled to carry 
out the two primary operations, namely, Wλ  

and TW x . The non-zero values of deflation 
matrix are either 1 or some combination of 
relative nodal coordinates. Therefore, both 
these operations only require the nodal 
coordinates, and the group mapping. 

As before, instead of “assemble and then 
multiply”, we have “multiply and then 
assemble”: 

 ( )n n

assemble

W Wλ λ∏�  (4.3) 

 ( )T T

n n
assemble

W x W x∏�  (4.4) 

Observe that the difference between 
Equation (4.2)  and Equation (4.3) is that the 
former is an assembly over elements, while 
the latter is an assembly over nodes. 

4.5 Reduced Stiffness Matrix Deflation  

Recall in step-3 of the DCG, one must 
compute the reduced matrix: 

 TK W KW� �  (4.5) 



   

In this paper, we assume that the number of 
groups (G) is much less than the number of 
nodes (N). Therefore the size (6G x 6G) of 
the reduced matrix is small compared to the 
size of the stiffness matrix. 

The reduced matrix is computed element-by-
element as follows. The element stiffness 
matrix is divided into an 8x8 block where 
each block is a 3x3 matrix associated with 
the degrees of freedom of a node:  

 
11 18

81 88

e

k k

K

k k

    =     

…

� � �

�

 (4.6) 

We then compute Equation (4.5) as follows: 
8 8

1 1

{( ) ( ) }T T

n j ij n i
element i j
assembly

W KW W k W
= =

= ∑∑∏  (4.7) 

Equation (4.7), even though assembly free, is 
not parallel friendly due to race condition. It 
is computed once in the CPU, and its 
Cholesky decomposition is stored for 
repeated solve. 

5. GPU IMPLEMENTATION 

In this section we outline the steps for 
implementing DCG on GPU.  

5.1 SpMV 

As mentioned earlier, the Sparse Matrix 
Vector Multiplication (SpMV) Kx  is the 
most expensive computation in DCG. Direct 
implementation of Equation (4.2) suggests 
that we assign a thread to each element and 
update the result element-by-element. 
However, this obviously creates a race 
condition when a nodal index connected to 
multiple elements is simultaneously 
accessed.  

Therefore, a thread is assigned to each node. 
Then, for all neighboring elements the 
stiffness coefficients associated with the 
node and their corresponding nodal DOF are 
gathered; this is illustrated in Figure 9. This 
ensures that the product 

e e
K x  is computed 

without race conditions. 

The memory access for gathering nodal DOF 
is unfortunately not coalesced since the 
DOFs are staggered based on element 
connectivity. However, once the result is 
computed the update in device memory is 
coalesced. 

 
Figure 9: SpMV implementation in GPU. 

5.2 Prolongation Operation 

The prolongation operation Wλ  is straight 
forward in that each thread can be assigned 
to a node. The corresponding group number 
is determined, and Equation (4.3) is 
executed. Figure 10 illustrates a schematic 
diagram of the prolongation operation. 

Memory access for prolongation is coalesced 
for the most part. The nodes can gather the 
nodal coordinates ( , , )x y z  in a lock-step 

method. However gathering the group DOF 
required for prolongation has the potential 
for bank conflict. Since the length of the 
vector associated with a group is small, this 
is not a serious issue; the result update is 
fully coalesced.   



   

 
Figure 10: GPU implementation of 

prolongation. 

5.3 Restriction Operation 

The restriction operation T
W x  is much more 

challenging to parallelize on the GPU due to 
potential race conditions. Instead of 
assigning a thread to each node, a block of 
threads is assigned to a group. Nodal 
projections are computed for each thread 
using Equation (4.4) and saved in shared 
memory within the block; this is illustrated 
in Figure 11. Threads are synchronized after 
the shared memory update. A reduce 
operation is performed on respective DOFs 
of the nodal projection to yield resultant 
vector for the group.  The allowable number 
of threads within the block is thus restricted 
by the shared memory. 

The memory access for this part of the 
implementation is not coalesced either, as 
node indexes that belong to the group may 
skip a large sequence indexes. As shown in 
Figure 11, the warp may end up with 
coalesced memory access if a contiguous 
sequence of indexes is assigned for 
restriction. 

 
Figure 11: GPU implementation for 

restriction. 

5.4 Other Operations 

All of the other steps of CG operations are 
computed using the standard functions 
available in the CuBLAS library of CUDA 
SDK 4.0 [28]. This includes computing the 
dot products of two given vectors, 
performing linear vector updates using 
saxpy/axpy and most importantly using a 
dense matrix vector solver. 

6. NUMERICAL RESULTS 

In this section, we present numerical results 
of the AF-DCG CPU and GPU 
implementations. Unless otherwise noted, 
experiments were conducted on a Windows 7 
64-bit machine with following specifications: 

• AMD Phenom™ II X4-955 processor 

running at 3.2GHz with 4GB of memory; 

OpenMP [29] commands were used to 

parallelize CPU code. 

• NVidia GeForce GTX 480 (448 cores) 

with 0.75GB of device memory. 

All computations were run in double-
precision, and the relative residual norm for 
CG-convergence was set to 10-8. 

6.1 Congruence of Mesh Elements 

First, to illustrate the computational 
advantages of exploiting mesh congruence, 
consider the beam in Figure 12. Meshes of 
increasing density were constructed; observe 



   

that all elements in the mesh are all 
identical. 

 

 
Figure 12: A beam geometry and its mesh. 

The time taken to perform a single 
assembly-free SpMV, i.e., a single Kx , on 
the CPU, with and without exploiting 
congruency was computed; the results are 
summarized in Figure 13. 

Observe that the computation associated 
with the two methods is exactly the same … 
the only difference is the memory access 
time! Further, the overhead of computing the 
global K  matrix has been neglected. 

When congruence is not exploited, element 
stiffness matrices are fetched from memory 
as needed. With congruence exploitation, all 
memory requests are mapped to the single 
element stiffness matrix (that is likely to be 
in cache memory). 

Figure 13 illustrates that a speed-up of 10 can 
be achieved in SpMV with no additional 
effort. Since SpMV lies at the core of all 
iterative methods, this has a far reaching 
consequence. Of course, in this scenario, the 
mesh contains one unique element. In 
practice, meshes typically contain a finite 
number ( 1≥ ) of distinct elements; the 

speed-up will depend on how the element 
stiffness matrices are grouped and accessed. 

 
Figure 13: Assembly-free SpMV on the CPU 

with and without exploiting element-
congruency. 

6.2 Deflated-CG on a Thick Solid 

Having discussed the importance of 
congruence exploitation, in this experiment 
we illustrate the impact of rigid body 
deflation on CG. A knuckle geometry is 
illustrated in Figure 14a that is fixed at the 
two horizontal holes, and a vertical force is 
applied on the third hole; observe that the 
geometry is relatively ‘thick’, i.e., there are 
no plate-like or beam-like features. A voxel 
mesh comprising of 997,626 elements 
(3,158,670 DOFs) was generated as 
illustrated in Figure 14b. 

  
Figure 14 (a) Knuckle geometry and loading. 

(b) Voxel mesh with 3.16 million DOF. 

To solve the above problem, the Jacobi-PCG 
took 1741 iterations and 245 seconds on the 
CPU. The displacement and stress plots are 
illustrated in Figure 15. 



   

 
Figure 15 Static displacement and stress for 

knuckle. 

The same system was then solved with 
different number of rigid-body 
agglomeration groups. For example, Figure 
16 illustrates agglomeration into 100 and 
1000 groups. 

 
Figure 16: Visual representation of 100 and 

1000 agglomeration groups. 

The results for varying number of groups are 
summarized in Table 1. The following 
observations are worth noting: 

• Increasing the groups from zero (pure 

Jacobi-PCG) to 100 groups reduces the 

number of CG-iterations by a factor of 10, 

but the CPU time reduces only by a factor 

of 4. The underlying reason is that every 

iteration in DCG entails two SpMV.  

• Further, increasing the number of groups 

beyond a certain limit can lead to an 

increase in computation time. Finding an 

optimal number of groups is a topic of 

future research. 

• As the number of iterations reduces, the 

speed-up gained through GPU also reduces 

as expected since the bottlenecks are the 

SpMV requires per iteration, and the TW x  

operation that is not amenable to fine-

grain parallelism. 

Finally, the memory requirements are fairly 
small even for a 3.15 million DOF.  

Table 1: Total iterations and time taken to 
solve the knuckle with varying number of 

groups 
G #Iter CPU 

Time 
(s) 

GPU 
Time 
(s) 

GPU 
Memory 
(MB) 

o 1741 245 36 174 

100 182 63 34 210 

200 145 54 29 213 

400 114 48 28 224 

600 95 48 31 252 

800 73 46 32 263 

1000 69 52 39 293 

The convergence plot in Figure 17 illustrates 
that the Jacobi-PCG converges slowly, but 
steadily towards the solution, without any 
stagnation; this is typical of solid mechanics 
problems posed over ‘thick’ solids. The rigid-
body agglomeration leads to a dramatic drop 
in number of iterations as mentioned earlier.  

 
Figure 17: Convergence of DCG vs Jacobi-

PCG. 

6.4 Thin Solids 



   

In this section, we consider the thin plate 
illustrated in Figure 18. The dimension of the 
plate is 100x100x5 (mm); the four side faces 
are fixed, with a static force applied to the 
top face. The geometry is discretized using a 
voxel mesh of 541,696 elements with 
2,042,415 DOF. 

 
Figure 18: Loading on a thin plate. 

The Jacobi-PCG converges to the solution in 
6337 iteration which took an average time of 
71.308 s.  

6.4.1 Rigid Body Agglomeration 

Rigid body deflation space was then used for 
DCG. The results are summarized in Table 2; 
the conclusions are similar those drawn 
earlier for the thick solid. 

Table 2: Total iterations and time taken. 
G #Iter CPU 

Time 
(s) 

GPU 
Time 
(s) 

GPU 
Memory 
(MB) 

o 6337 550 71 113 

100 736 126 36 138 

200 382 72 23 146 

300 260 54 23 161 

400 199 48 22 178 

500 166 49 26 205 

600 144 52 33 233 

The convergence plot in Figure 19 highlights 
the effectiveness of DCG in case of thin 
structures. The presence of numerous low-
order eigen-modes leads to stagnation for 
Jacobi-PCG whereas DCG ensures that the 
low-order eigen modes are smoothed 
effectively.  

 
Figure 19: Convergence of DCG vs Jacobi-

PCG for thin plate. 

6.4.2 Kirchhoff-Love Agglomeration 

Next, the above problem was solved using 
the thin-plate agglomeration; see Equation 
(3.3). Table 3 summarizes the results. 
Observe that, although the Kirchhoff-Love 
agglomeration consumes 30% more degrees 
of freedom per group, the net-gain is 
significant. In other words, for the same 
number of group-DOF, for thin structures, 
capturing the curvature leads to faster 
convergence. It is a better alternative for 
large scale problems with limited memory 
constraints. 

Table 3: Total iterations and time taken. 
G #Iter CPU 

Time 
(s) 

GPU 
Time 
(s) 

GPU 
Memory 
(MB) 

o 6337 550 71 113 

100 256 52 21 140 

200 130 35 18 161 

300 96 35 22 192 

400 76 42 31 233 

6.4.3 Computational Bottlenecks 

Figure 20 illustrates the CUDA profile for the 
rigid-body deflation on the GPU for the 
above problem with 400 groups (the profile 
is similar for the Kirchhoff-Love 
agglomeration). Observe that 50% of the 
time is spent in the Kx  SpMV kernel, about 
20% is spent on the restriction operation 



   

TW x ; the remaining 30% is spent on other 
tasks. 

 
Figure 20: CUDA Profile for RBM deflation 

6.5 Large-Scale FEA 

Since the algorithm consumes relatively less 
memory, one can solve reasonably large-
scale problem on a typical desktop. To 
illustrate consider the ‘Thomas’ engine in 
Figure 21 whose wheel are fixed, and a load 
is applied as shown. 

 
Figure 21: Structural problem over a Thomas 

engine. 

Since the finite element analysis relies on a 
robust voxelization scheme, the detailed 
features of the model need not be 
suppressed. Here, the model was voxelized 
using 20 million elements, resulting in a 50 
million DOF system. 

 
Figure 22: Deflection from a 50 million DOF 

system. 

For this experiment, we used the GTX Titan 
GPU card with 6GB of memory. The linear 
system was solved on this GPU using rigid-
body agglomeration with 900 groups in 24 
minutes, consuming less than 3 GB of 
memory. 

7. CONCLUSION 

The main contribution of the paper is an 
assembly-free deflated conjugate gradient 
method for solid mechanics. In addition, the 
concept of “curvature-sensitive” 
agglomeration was proposed for efficient 
handling of thin structures. This paper 
serves as a foundation for future work on: (1) 
non-linear deformation, (2) composite 
modeling, and (3) topology optimization 
[30]. In the current implementation, the 
reduced matrix computation in step-3 of the 
DCG algorithm is performed on the CPU. 
This can take a significant amount of time 
for large number of groups. Future work will 

focus on improving the efficiency of this step. 
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