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Abstract The objective of this paper is to introduce and
demonstrate an algorithm for stress-constrained topology
optimization. The algorithm relies on tracking a level-set
defined via the topological derivative. The primary advan-
tages of the proposed method are: (1) the stresses are
well-defined at all points within the evolving topology, (2)
the finite-element stiffness matrices are well-conditioned,
making the analysis robust and efficient, (3) the level-set is
tracked through a simple iterative process, and (4) the stress
constraint is precisely satisfied at termination. The proposed
algorithm is illustrated through numerical experiments in
2D and 3D.

Keywords Topology optimization · Stress · Level set

1 Introduction

Topology optimization plays an important role in structural
design today. It has rapidly evolved from an academic exer-
cise into an exciting discipline with numerous industrial
applications.

The most common topology optimization problem is
that of compliance-minimization. As an illustrative exam-
ple, consider the plane-stress problem over the domain D

in Fig. 1. A compliance minimization problem, assuming
a finite element discretization for the underlying elasticity
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problem, may be posed as Eschenauer and Olhoff (2001)
and Rozvany (2009):

Min
�⊂D

J

|�| ≤ v0 in �

subject to
Ku = f

(1.1)

where:

u : Finite element displacement field

K : Finite element stiffness matrix

f : External force vector

J : Compliance = uT f

v0 : Maximum allowable volume

� : Topology to be computed
D : Region within which the topology must lie

(1.2)

Thus the objective is to find the (optimal) topology of a
given volume fraction with least compliance.

Before the above problem can be solved, optimization
parameters must be defined that capture the evolving topol-
ogy; see Rozvany (2009) and Bendsoe and Sigmund (2003)
for a review. In Solid Isotropic Material with Penalization
(SIMP), the optimization parameters are the density vari-
ables assigned, usually to each finite element. These density
variables define the topology as described, for example in
Sigmund (2001). On the other hand, in level-set methods
(Allaire et al. 2002; Allaire and Jouve 2005; He et al. 2007;
Wang et al. 2003), the topology is defined and controlled
via an auxiliary function. The reader is referred to Guo
et al. (2011) for a thorough mathematical treatment of the
level-set based formulation.
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Fig. 1 A structural problem

In stress-constrained topology optimization, the underly-
ing problem may be posed as:

Min
�⊂D

|�|
σ ≤ σmax in �

J ≤ Jmax

subject to
Ku = f

(1.3)

where:

σ : von Mises Stress

σmax : Max allowable von Mises Stress

Jmax : Max compliance allowed

� : Topology to be computed
D : Region within which the topology must lie

(1.4)

The objective here is to find the (optimal) topology of
least volume subject to stress and compliance constraint.
Note that the compliance constraint is required to avoid the
pathological case of zero volume topology that satisfies the
stress constraint trivially (Guo et al. 2011). The compliance
constraint is critical and handled later in the paper. Such
stress constrained problems are harder to solve than compli-
ance problems (Yang and Chen 1996), and arguably more
important (Duysinx et al. 2008).

Current methods for solving stress-constrained topol-
ogy optimization problems are reviewed in Section 3. In
this paper, a new topological sensitivity (Sokolowski and
Zochowski 1999) based method is proposed. The concept
of topological sensitivity is reviewed in Section 3. This is
followed by a detailed description of the proposed method
in Section 4. In Section 5, numerical results are presented,
followed by conclusions and open issues in Section 6.

2 Literature review

Methods for solving stress-constrained topology optimiza-
tion problems can be classified into two distinct types: SIMP
and level-set.

A common challenge to both strategies is resolving the
point-wise stress constraints in (1.3), i.e., it is impossible
to impose stress constraints at all points within the domain.

Therefore, in a finite element implementation, the element-
stresses are typically lumped together into a single global
quantity via the p-norm (Le et al. 2010), Kreisselmeier–
Steinhauser function (Paris et al. 2009), or potentially active
constraints (Duysinx and Bendsoe 1998), and global/local
penalization (Xia et al. 2012). The equivalence of these two
measures, and their justification is discussed, for example,
in Qiu and Li (2010). Later in this paper, we shall exploit
the p-norm global measure. Alternately, active-set method-
ologies have also been proposed where a finite number of
elements with the highest stress states are chosen to be
active during a given iteration (Bruggi and Duysinx 2012;
Zhang et al. 2012).

2.1 Solid Isotropic Material with Penalization (SIMP)

The most popular topology optimization strategy today
is SIMP where pseudo-densities are assigned to finite-
elements, and then optimized to meet the desired objective
(Sigmund 2001).

The primary advantage of SIMP is that it is well-
developed, but the ‘singularity-problem’ associated with
zero-density elements require careful treatment, for exam-
ple through epsilon-methods (Guo and Cheng 2004; Le
2010). Secondly, the ill-conditioning of the stiffness matri-
ces, once again due to the low-density elements, can lead to
high computational costs for iterative solvers (Wang et al.
2007; Suresh 2013). Additional challenges including stress-
ambiguity and accuracy over gray-elements are identified
and discussed in Guo et al. (2011).

One of the earliest implementation of SIMP for stress-
constrained topology optimization was reported in Yang and
Chen (1996), where the authors addressed instability and
singularity issues via a weighted combination of compli-
ance and global stress measure. Such concepts continue to
play an important role today. In Stump et al. (2007), the
authors proposed a framework to design the material dis-
tribution of functionally graded structures with a tailored
Von Mises stress field. In Paris et al. (2009), the authors
studied the weight minimization problems with global or
local stress constraints, in which the global stress constraints
are defined by the Kreisselmeier–Steinhauser function. In
Le (2010), to resolve the stress singularity phenomenon,
a SIMP-motivated stress definition was used. In addition,
the author used the restriction method with a density fil-
ter for length scale control. Finally, a global/regional stress
measure combined with an adaptive normalization scheme
to control the local stress level. The mixed finite ele-
ment method (FEM) was proposed for stress-constrained
topology optimization, to alleviate the challenges posed by
displacement-based FEM (Bruggi and Venini 2008). More
recently, the authors of Yalamanchili and Kumar (2012)
proposed a conservative global stress measure, and the
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objective function was constructed using the relation-
ship between mean compliance and von Mises stress,the
authors used a SIMP-based mesh-independent framework.
In Bruggi and Duysinx (2012) Drucker–Prager failure cri-
terion is considered within the SIMP framework to handle
materials with different tension and compression behav-
iors; a stress-relaxation scheme is proposed to handle the
well—known stress singularity.

As an alternate to SIMP, a free material optimization was
proposed in Kocvara and Stingl (2012) as a means of address-
ing the stress singularity in SIMP. Similarly, in Svanberg
and Werme (2007), binary design variables were used
instead of density variables, and the problem was reduced to
that of integer-programming, with guaranteed local minima.

2.2 Level-set

The second strategy for solving stress-constrained topol-
ogy optimization problems relies on defining the evolving
topology via a level-set. Since the domain is well-defined
at all times, the singularity problem does not arise, and the
stiffness matrices are typically well-conditioned. One of the
earliest implementation of level-set based stress-constrained
topology optimization appears in Allaire and Jouve (2008)
where the authors proposed to minimize a domain integral
of stress subject to material volume constraint. A similar
approach was explored in James et al. (2012). In partic-
ular, to address irregular, i.e., non-rectangular domains,
an iso-parametric approach to solving the Hamilton-Jacobi
equation was explored by the authors. In the level-set imple-
mentation of Xia et al. (2012), a new global stress measure
was proposed. In Guo et al. (2011) and Zhang et al. (2012),
the authors combine the advantages of level-set with X-
FEM for accurate shape and topology optimization. The
active-set methodology with augmented Lagrangian is used
to alleviate stress-concentrations. Numerous examples are
provided to illustrate the effectiveness of their method.

The authors of Amstutz and Novotny (2010) were the
first to explore the use of topological derivative in stress-
based topology optimization. In particular, they introduced
a class of penalty functionals for point-wise constraints on
the Von Mises stress field.

3 Technical background

The proposed method rests on the notion of topological
sensitivity, reviewed next.

3.1 Topological sensitivity

Topological sensitivity captures the first order impact of
inserting a small circular hole within a domain on various

quantities of interest. This concept has its roots in the influ-
ential paper by Eschenauer et al. (1994), and has later been
extended and explored by numerous authors (Sokolowski
and Zochowski 1999; Novotny et al. 2005, 2007; Novotny
2006; Céa et al. 2000) including generalization to arbitrary
features (Turevsky et al. 2009; Turevsky and Suresh 2007;
Gopalakrishnan and Suresh 2008).

Although the focus of this paper is on stress constrained
problems, for simplicity, the concept of topological sensitiv-
ity is reviewed using compliance minimization.

Consider again the problem illustrated earlier in Fig. 1.
Let the initial compliance of the system be J0.

Suppose we introduce a tiny hole, i.e., modify the topol-
ogy, as illustrated in Fig. 2, the finite element solution and
the compliance will change. Specifically, let an infinitesi-
mal hole of radius r be inserted at point p and let the new
compliance be J (r). The topological sensitivity in 2-D is
defined as:

T J (p) ≡ lim
r→0

J (r) − J0

πr2
(3.1)

Using the above definition, the following closed-form
expression can be derived for the topological sensitivity
(Turevsky and Suresh 2011):

TJ (p) = 4

1 + ν
σ : ε − 1 − 3ν

1 − ν2
tr(σ )tr(ε) (3.2)

where ν is the Poisson’s ratio, σ and ε are the stress and
strain tensors respectively at point p (before the hole was
inserted). Thus, given the stress and strain field in the
original domain (without the hole), one can compute the
topological sensitivity over the entire domain; the resulting
(scaled) field is illustrated in Fig. 3. Observe that if the topo-
logical sensitivity is small (large), then removing material at
that point has little (significant) impact on the compliance.
In 3-D, the topological sensitivity field for compliance is
given by Novotny et al. (2007):

T = −20μσ : ε − (3λ − 2μ) tr(σ )tr(ε) (3.3)

where μ & λ are the Lame parameters.
A simple approach to exploiting topological sensitivity

in topology optimization is to ‘kill’ mesh-elements with low
values. However, this leads to instability and checker-board
patterns. Alternately, the TS field can be used to introduce

Fig. 2 A topological change
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Fig. 3 Topological sensitivity field

holes during the topology optimization process via an aux-
iliary level-set (Allaire et al. 2004). Finally, the authors in
Norato et al. (2007), use the topological sensitivity field
with fictitious domain method to enhance the convergence
of topology optimization.

Here we consider an alternate and a more powerful
approach called “PareTO” where one exploits the topologi-
cal sensitivity field directly as a level-set.

4 Proposed method

The PareTO method (Suresh 2010) is first discussed below
using compliance minimization, and then extended to stress
minimization.

4.1 PareTO for compliance minimization

In PareTO, the topological sensitivity field directly serves as
a level-set. Associated with the level-set is a cutting-plane.
For example, Fig. 4a illustrates again the compliance field
TJ and a cutting plane corresponding to an arbitrary cut-off
value τ = 0.03. Given the field, and a cutting plane, one can
define a domain �τ per:

�τ = {p| TJ (p) > τ } (4.1)

In other words, the domain �τ is the set of all points where
the topological field exceeds τ ; the induced domain �τ is
illustrated in Fig. 4b. The τ value can be chosen such that,
say, 10 % of the volume is removed. Observe how portions
of the domain that are least critical for the stiffness of the
structure have been eliminated. In other words, a ‘pseudo-
optimal’ domain has been constructed directly from the
topological sensitivity field. This is akin to the ‘kill method’.

However, the computed domain may not be ‘pareto-
optimal’ (see Suresh 2010), i.e., it is not the stiffest structure
for the given volume fraction. One must now repeat the fol-
lowing three steps: (1) solve the finite element problem over
�τ (2) re-compute the topological sensitivity, and (3) find a
new value of τ for the desired volume fraction. In essence,
we carry out a fixed-point iteration (Céa et al. 2000; Norato
et al. 2007; Suresh 2013) involving three quantities (see

Fig. 4 Topological sensitivity field as a level-set

Fig. 5): (1) domain �τ , (2) displacement fields u and v over
�τ , and (3) topological sensitivity field over �τ . Typically,
convergence is reached in 3 to 4 iterations (Suresh 2013).

Once convergence has been achieved, an additional 10 %
volume can be removed by repeating this process. Thus, the
overall PareTO algorithm is illustrated in Fig. 6.

Using the above algorithm, the compliance problem
posed in (1.1) can be solved, resulting in a series of pareto-
optimal topologies as illustrated in Fig. 7. In other words,
PareTO, as the name suggests, finds pareto-optimal solu-
tions to the multi-objective problem:

Min
�⊂D

{J, |�|} (4.2)

4.2 Stress constrained compliance minimization

One can extend the above method by adding a stress con-
straint directly to (4.2), resulting in:

Min
�⊂D

{J, |�|}
σ ≤ σmax in �

(4.3)

Fig. 5 Fixed point iteration involving three quantities
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Fig. 6 An overview of the PareTO algorithm

In other words, in Step-5 of Fig. 6, an additional check σ ≤
σmax is imposed over all the elements, and the algorithm
will generate a series of pareto-optimal topologies until the
stress (in any element) exceeds a prescribed value. Such
topologies will be referred to here as stress-constrained
compliance minimized (SCCM) topologies. As expected,
and illustrated later on, SCCM topologies are sub-optimal.

4.3 Stress constrained stress minimization

In contrast, one can define a stress topological sensitivity
field TS that will capture the sensitivity of the maximum

Fig. 7 Pareto-optimal topologies

stress (in a global sense) with respect to a topological
change. Specifically a global stress measure is defined here
via the popular p-norm (Le et al. 2010):

S =
(∑

e

(σe)
p

)1/p

(4.4)

Now consider modifying the problem in (4.3) to a stress
objective problem (with a finite compliance constraint to
avoid zero-volume case):

Min
�⊂D

{S, |�|}
σ ≤ σmax in �

J ≤ Jmax

(4.5)

In order to solve the above problem via the PareTO method,
one must compute the topological sensitivity of the quan-
tity S. Towards this end, recall that the sensitivity of S with
respect to a nodal displacement ûn is given by:

g(n) = − ∂S

∂ûn

= − 1

p

(∑
e

(σe)
p

)1/p−1

×
[∑

e

p (σe)
p−1 ∂σe

∂ûn

]
(4.6)

Recall that the von Mises stress σe (in 3-D) is given by:

σe = 1√
2

√
(σ11−σ22)

2+(σ11−σ33)
2+(σ22−σ33)

2

+ 6 (σ12σ12+σ13σ13+σ23σ23)
(4.7)

where the individual stresses are related to the nodal dis-
placements via:

{σ }(6,1) = [D](6,6)[B](6,24) {u}(24,1) (4.8)

In the above equation [D] is the usual material tensor, [B]
is the gradient matrix, and

{σ }(6,1) =
{

σ11 σ22 σ33 σ12 σ13 σ 23

}T

{û}(24,1) = {
u1 v1 w1 · · · v8 w8

}T
(4.9)

Thus, one can easily show that:

g = − 1

p

(∑
e

(σe)
p

)1/p−1 [∑
e

ge

]
(4.10)

where:

ge = p(σe)
p−2 1√

2

⎛
⎜⎜⎜⎝

(σ11 − σ22)
(
F1,: − F2,:

) +
(σ11 − σ33)

(
F1,: − F3,:

) +
(σ22 − σ33)

(
F2,: − F3,:

) +
6σ12F4,: + 6σ13F5,: + 6σ23F6,:

⎞
⎟⎟⎟⎠

[F ](6,24) = [D](6,6)[B](6,24) (4.11)

Now g defines the ‘right-hand-side’ of an adjoint problem
(Choi and Kim 2005):

Kλ = −∇uS ≡ g (4.12)
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The stiffness matrix is identical to that of (4.15). Once the
adjoint field λ is computed the stress topological sensitivity
field is defined (in 3-D) as Turevsky and Suresh (2011) and
Feijoo et al. (2005):

TS = 4

1 + ν
σ(u) : ε (λ) − 1 − 3ν

1 − ν2
tr [σ(u)] tr[ε(λ)] (4.13)

where σ(u) refers to the stress tensor computed from the pri-
mary field, and ε(λ) is the strain tensor computed from the
adjoint field. Unlike the compliance topological sensitivity
field, the stress topological sensitivity field TS depends on
the p-norm value. For p = 4, Fig. 8 illustrates the stress
sensitivity field TS . Observe that it closely resembles the
compliance field TJ of Fig. 4.

On the other hand, Fig. 9 illustrates the TS field for p =
8; the TS field flattens out as p is increased.

4.4 Stabilization

One can now use the stress topological sensitivity field TS

(instead of the compliance field) directly in the PareTO
algorithm of Fig. 6. There is however a numerical issue that
one must address. Specifically, for the stress measure S in
(4.4), a large value of p, say p ≥ 6, is desirable to accu-
rately capture the maximum stress. However, as one can
observe in Fig. 9, for large values of p, the stress sensi-
tivity field TS typically flattens out far away from regions
of high sensitivity. This poses a numerical challenge during
level-set extraction. To overcome this challenge, we define
a weighted topological sensitivity field per:

T = wTS + (1 − w)TJ ; 0 ≤ w ≤ 1 (4.14)

where the weight w is determined dynamically as described
in the next section (a similar concept of weighting stress and
compliance objectives was exploited, for example, in the
SIMP-based implementation of Yang and Chen 1996). An
additional advantage of this method is that, when the stress
topological sensitivity cannot distinguish between regions

Fig. 8 A scaled stress topological sensitivity for p = 4

Fig. 9 Stress topological sensitivity for p = 8

of similar sensitivity (flat regions), the compliance sensitiv-
ity field induces a preference for a stiffer design, and thereby
ensuring a finite compliance.

4.5 Stress constrained stress minimization

The modified PareTO algorithm, specifically for stress-
constrained problems, is illustrated in Fig. 10. The details
are as follows:

1. We start with � = D, i.e., we start with a volume frac-
tion of 1.0. The cutting-plane parameter τ is initialized
to zero. The weighting factor w in (4.14) is set to a
high-value (say 1).

2. A finite element analysis is carried out on � (also see
next section).

Fig. 10 The proposed algorithm
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3. The compliance field TJ is computed via (3.2), the
stress field TS is computed via (4.13). Finally, the
weighted field T is computed via (4.14), using the
current weight w.

4. Given the weighted field T and the target volume frac-
tion v − 
v, we seek the parameter τ such that |�τ |
is equal to the target volume fraction. This is a binary-
search algorithm between the maximum and minimum
values of T .

5. As described earlier, the above level-set extraction
may fail due to numerical difficulties, especially if the
weight factor w is large. If the extraction fails, then w is
reduced by a small factor; say η = 0.9. Steps 2 through
5 are repeated until convergence is reached.

6. Once the desired value of τ has been computed, if the
stress constraint is satisfied, the volume is decremented
and the algorithm returns to Step 2.

7. Once the algorithm terminates, one can extract the iso-
surface extraction via classic marching-cubes algorithm
(Lorensen and Cline 1987).

The resulting topology will be referred to ‘stress con-
strained stress minimized (SCSM)’ topologies. Note that
the stress-constraint is applies directly on the maximum
von Mises stress (Fig. 10), and not on the p-norm mea-
sure. The latter is used primarily to compute the topological
sensitivity and drive the topology.

Also note that elements are either ‘in’ or ‘out’, depending
on the level-set, i.e., depending on (4.1). Partial elements
lead to high-condition numbers, and are therefore avoided
in the current work.

4.6 Finite element analysis

In the finite element analysis (Step 2 of Fig. 10), the design
space is discretized into bi-linear quad elements in 2-D,
and tri-linear hexahedral elements in 3-D; these elements
offer a good compromise between accuracy and speed. The
corresponding shape-functions and element-stiffness matri-
ces can be found, for example, in Zienkiewicz and Taylor
(2005).

In 2-D, the element stiffness matrices are assembled to
form the global K matrix, and the following linear problem
is solved using Matlab:

Ku = f (4.15)

In 3-D, solution of such linear systems can be time and
memory consuming. Therefore, instead of assembling the
global stiffness matrix K we have chosen an ‘assembly-
free’ (a.k.a. ‘matrix-free’) approach (Augarde et al. 2006).
The linear system is solved implicitly using the assembly-
free Jacobi-preconditioned conjugate-gradient (Jacobi-
PCG) method (Saad 2003). Since PCG only requires a

sparse matrix-vector multiplication (SpMV) Ku, this is
implemented as follows:

Ku =
(∑

e

Ke

)
u =

∑
e

Keue (4.16)

In other words, the element solution vectors are multi-
plied by the (non-zero) element stiffness matrices, and then
assembled. An additional benefit of a matrix-free imple-
mentation is that only the non-zero elements need to be
considered. As the topology evolves, the computational cost
reduces dramatically. Further, in the proposed method, the
stiffness matrix is well-conditioned, and consequently, even
the simple Jacobi-PCG converges rapidly.

For topology optimization, a fast linear solver is critical.
In today’s computational architecture, the primary compu-
tational cost in an iterative linear solver is memory-access
(Arbenz et al. 2005). The cost of accessing elements of K

can be dramatically reduced through assembly-free meth-
ods,details may be found in Suresh (2013) and Suresh and
Yadav (2012).

5 Numerical examples

In this section, we present results from numerical experi-
ments and compare the stress constrained compliance min-
imization (SCCM) topologies, and stress constrained stress
minimization (SCSM) topologies.

The default parameters are as follows:

• The material properties are E = 1 and v = 0.3.
• In Steps 2 to 5 of the algorithm, the fixed-point iteration

is assumed to have converged if the change in com-
pliance is less than 5 %. The volume step-size set to
0.05.

• Unless otherwise noted, the p-norm value in all experi-
ments is 8.

All experiments were conducted on a Windows 7 64-bit
machine with the following hardware:

• Intel I7 960 CPU quad-core running at 3.2 GHz with
6 GB of memory; parallelization of CPU code was
implemented through OpenMP commands.

• The graphics programmable unit (GPU) is an NVidia
GeForce GTX 480 (480 cores) with 1.5 GB.

5.1 Tip-load cantilever

The first experiment involves the classic 2-D cantilever
beam illustrated in Fig. 11, where one end of the beam is
fixed, while a load is applied at the other end, as illustrated.
The relative stress constraint was set to 1.2, as noted in the
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Fig. 11 The cantilevered beam problem

title of Fig. 11. In other words, the maximum von Mises
stress should not exceed 1.2 times the initial maximum von
Mises stress. The domain was discretized into 990 quad
elements as indicated.

The SCCM (stress constrained compliance minimized)
topology, obtained by solving (4.3), is illustrated in Fig. 12.
The algorithm terminated after 63 finite element operations,
at a volume fraction of 0.67.

In all the numerical experiments that follow, the (rela-
tive) von Mises stress is displayed using a color-plot. Thus,
in Fig. 12, the stress concentration occurs at the walls. Fur-
ther note that the stress at the point of force application
is relatively low since we have distributed the force over
multiple-elements as illustrated in Fig. 11.

Figure 13 illustrates the compliance history and stress
history of the algorithm, as a function of the volume frac-
tion. As one can observe, the compliance of the final struc-
ture is approximately 25 % more than the initial compliance,
while the maximum von Mises stress is 20 % more than the
initial von Mises stress (as imposed by the constraint).

For the same structural problem, the SCSM (stress con-
strained stress minimized) topology, obtained by solving
(4.5) with p = 8, is illustrated in Fig. 14. The algorithm
terminated, after 190 finite element operations, at a vol-
ume fraction of 0.5. Thus, the SCSM topology is of a lower
volume fraction compared to the SCCM topology.

Fig. 12 Stress-constrained compliance minimized (SCCM) topology

Fig. 13 History plots of relative compliance and relative maximum
von Mises stress for the SCCM topology

Figure 15 illustrates the compliance history and stress
history as a function of the volume fraction. The compliance
of the final structure is approximately 80 % more than the
initial compliance, while the maximum von Mises stress is
20 % more than the initial von Mises stress (satisfying the
constraint). As expected, the SCSM topology is of a higher
compliance.

Further note that the number of finite element operations
for computing the SCSM is significantly larger. This is to
be expected for two reasons: (1) in SCCM, for each itera-
tion, only one finite element operation is required, whereas
in SCSM, each iteration requires two finite element opera-
tions: one for the primary, and one for the adjoint, (2) since
a lower volume fraction is reached in SCSM, larger number
of iteration is to be expected.

In the proposed method, the Young’s modulus of the
material outside the evolving topology is set to zero. Con-
sequently, the stiffness matrix is well-conditioned, and one
can rely on iterative methods for solving the linear sys-
tem of equations. This is particularly important in 3-D,
where direct methods can be memory-intensive and slow.
The number of conjugate-gradient iterations required as the
topology evolves is illustrated in Fig. 16. In contrast, in the
SIMP formulation, the number of conjugate gradient itera-
tions can grow by a factor of 10 or more; see Suresh (2013).

Fig. 14 Stress-constrained stress minimized (SCSM) topology
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Fig. 15 History plots of relative compliance and relative maximum
von Mises stress for the SCSM topology

5.2 L-Bracket

The next experiment is the classic L-Bracket with top load,
illustrated in Fig. 17. The relative stress constraint was set to
1.0, i.e., the maximum von Mises stress should not exceed
the initial maximum von Mises stress.

The resulting SCCM (stress constrained compliance min-
imized) topology, obtained by solving (4.3), is illustrated in
Fig. 18. The algorithm terminated after 66 finite element
operations, at a volume fraction of 0.66. The final compli-
ance is 20 % more than the initial compliance, while the
stress meets the imposed constraint.

The SCSM topology is illustrated in Fig. 19; observe the
significant difference in topology compared to Fig. 18. The
algorithm terminated after 212 finite element operations, at
a volume fraction of 0.47. The final compliance is 80 %
more than the initial compliance, while the stress precisely
the imposed constraint.

The above SCSM topology was generated with the p-
norm value of 8. Figure 20 illustrates the SCSM topologies
for various other values of the p-norm. Figure 20 also

Fig. 16 Number of conjugate-gradient iterations during each of the
finite element operations

Fig. 17 An L-Bracket with top load

summarizes the final volume fractions, and the number of
finite element operations at termination. Observe that for
small values of the p-norm, the topology resembles the com-
pliance topology. Thus p ≥ 6 is usually desirable. On the
other hand, the number of FEA increases as the p-norm
increases, with no appreciable reduction in volume fraction.
For this reason, we have chosen the value of p = 8 for the
remainder of the experiments.

5.3 L-Bracket: mesh refinement

We will now explore the sensitivity of the algorithms
to mesh-refinement. Specifically in Fig. 21, 1980 quad-
elements are used to discretize the geometry, as opposed to
1024 elements in the previous experiment.

The resulting SCCM (stress constrained compliance min-
imized) topology is illustrated in Fig. 22; the results are
comparable to that of Fig. 18.

On the other hand, the SCSM topology illustrated in
Fig. 23 is of a slightly lower volume fraction compared to
that of Fig. 19, but similar topology.

Fig. 18 SCCM topology
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Fig. 19 SCSM topology

5.4 Michelle beam

The next experiment is the classic Michelle problem illus-
trated in Fig. 24. The relative stress constraint was set to
1.25.

The SCCM topology is illustrated in Fig. 25. The algo-
rithm terminated after 71 finite element operations, at a
volume fraction of 0.53. The final compliance is 50 %
more than the initial compliance, while the stress meets the
imposed constraint.

The SCSM topology is illustrated in Fig. 26; the topol-
ogy is similar to the SCCM topology. However, the shape is
significantly different. The algorithm terminated after 206
finite element operations, at a volume fraction of 0.39. The

4p
v = 0.5; FEA = 170 v = 0.5; FEA = 204

v = 0.46; FEA = 248 v = 0.46; FEA = 258

= 6p =

10p = 12p =

Fig. 20 SCSM topologies for various p-norm values

Fig. 21 A top-loaded L-Bracket with refined mesh

final compliance is 120 % more than the initial compliance,
while the stress meets the imposed constraint.

5.5 Mast

Next consider the mast problem (Amstutz and Novotny
2010) illustrated in Fig. 27. The relative stress constraint
was set to 1.2.

The SCCM topology is illustrated in Fig. 28. The algo-
rithm terminated after 72 finite element operations, at a
volume fraction of 0.47. The final compliance is 110 %
more than the initial compliance, while the stress meets the
imposed constraint.

The SCSM topology is illustrated in Fig. 29. The algo-
rithm terminated after 380 finite element operations, at a
volume fraction of 0.39. The final compliance is 190 %
more than the initial compliance, while the stress meets the
imposed constraint.

5.6 Portal-frame (2-D)

The portal-frame problem discussed in Zhang et al. (2012) is
illustrated in Fig. 30. Observe the stress-raisers at the three
reentrant corners,please see Zhang et al. (2012) for further

Fig. 22 SCCM topology
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Fig. 23 SCSM topology

Fig. 24 Michelle-beam problem

Fig. 25 SCCM topology

Fig. 26 SCSM topology

Fig. 27 Mast problem

Fig. 28 SCCM topology for the mast problem

Fig. 29 SCSM topology for the mast problem

Fig. 30 The portal-frame problem (Zhang et al. 2012)
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Fig. 31 SCCM topology for the portal-frame

details. The desired volume fraction was set to 0.35, and the
relative max stress constraint was set to 2.0

The SCCM topology is illustrated in Fig. 31. The algo-
rithm terminated after 29 finite element operations. Observe
the stress concentration at the center

The SCSM topology is illustrated in Fig. 32. The
fundamental difference is that the stress-raiser has been
smoothen-out as illustrated. Consequently, the maximum
stress is significantly lower.

5.7 L-Bracket (3-D)

Next, we repeat the L-Bracket example, but in 3-D, as illus-
trated in Fig. 33; the thickness of the L-bracket was 5 units.
The problem is similar to that of Fig. 17, with identical
stress constraint of 1.0. The 3-D geometry was voxelized
(Suresh 2013) with approximately 11000 hexahedral ele-
ments, and the resulting finite element mesh has close to
50,000◦ of freedom. The problem was solved where the 3-D
topological sensitivity field serves as the level-set.

The SCCM topology is illustrated in Fig. 34. The algo-
rithm terminated after 49 finite element operations, at a
volume fraction of 0.73 due to the stress constraint. The
compliance of the final structure is approximately 11 %

Fig. 32 SCSM topology for the portal frame

Fig. 33 The 3-D L-Bracket problem

more than the initial compliance. The total time taken to find
the optimal topology using the CPU was 95 s, and using the
GPU was 35 s (Fig. 34).

For the same structural problem, the SCSM topology is
illustrated in Fig. 35. The algorithm terminated after 284
finite element operations at a volume fraction of 0.357. The
time taken on the CPU was approximately 10 min, and using
the GPU was 213 s.

5.8 Knuckle design (3-D)

Finally, we consider the ‘knuckle’ geometry illustrated in
Fig. 36, where the two horizontal holes were fixed, while
a vertical force was applied on the vertical (inner) cylindri-
cal face at the top. The 3-D geometry was voxelized with

Fig. 34 SCCM topology for 3-D L-Bracket
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Fig. 35 SCSM topology for 3-D L-Bracket

Fig. 36 Two views of the knuckle problem

Fig. 37 Two views of the SCCM topology (volume fraction of 0.52)

Fig. 38 Two views of the SCSM topology (volume fraction of 0.48)

approximately 27000 hexahedral elements, and the result-
ing finite element mesh had approximately 100,000◦ of
freedom. The relative stress constraint was set to 1.2.

Two views of the SCCM topology are illustrated in
Fig. 12. The algorithm terminated after 74 finite element
operations, at a volume fraction of 0.52. The compliance of
the final structure was approximately 25 % more than the
initial compliance. The total time taken to find the optimal
topology using the CPU was 140 s, and using the GPU, was
46 s (Fig. 37).

The SCSM topology is illustrated in Fig. 35; observe the
significant difference in topology. The compliance of the
final structure was approximately 43 % more than the initial
compliance. The algorithm terminated after 286 finite ele-
ment operations with a volume fraction of 0.48. The total
time taken to find the optimal topology using the CPU was
140 s, and using the GPU, was 46 s (Fig. 38).

6 Conclusions

The main contribution of the paper is a new method for
stress constrained topology optimization. As illustrated via
numerical examples, the proposed is efficient and robust
with respect to parameter changes. Further, the stress con-
straint is precisely satisfied at termination.

As reported by various authors, the topologies obtained
via stress minimization are significantly different, and typ-
ically of a lower volume fraction, compared to topologies
obtained via compliance minimization. Future work will
focus on including other constraints including buckling and
eigen-modes.

PareTO can be downloaded from www.ersl.wisc.edu.
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