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Abstract  

 The objective of this paper is to introduce an efficient 
algorithm and implementation for large-scale 3-D topology 
optimization. The proposed algorithm is an extension of a 
recently proposed 2-D topological-sensitivity based method 
that can generate numerous pareto-optimal topologies up to 
a desired volume fraction, in a single pass. 

 In this paper, we show how the computational challenges 
in 3-D can be overcome. In particular, we consider an 
arbitrary 3-D domain-space that is discretized via 
hexahedral/brick finite elements. Exploiting congruence 
between elements, we propose a matrix-free 
implementation of the finite element method. The latter 
exploits modern multi-core architectures to efficiently solve 
topology optimization problems involving millions of 
degrees of freedom. The proposed methodology is 
illustrated through numerical experiments; comparisons are 
made against previously published results. 

1. INTRODUCTION 

 Consider the topology optimization problem:  
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Various methods such as homogenization [1], Solid 
Isotropic Material with Penalization (SIMP) [2] and level-
set [3–6], have been proposed to solve such problems. 
These methods can systematically generate insightful 
topologies for complex engineering problems; see [7] and 
[8] for a review. For example, Figure 1a illustrates a plane-
stress problem over a domain space D , with unit force; the 

material properties are: 1E =  and 0.3ν = . An optimal 

topology Ω , generated via SIMP, for a volume fraction of 
0.5 is illustrated in Figure 1b. 

 

(a) Topology optimization problem 

 

(b) Optimal topology for a volume fraction of 0.5 

Figure 1: A typical topology optimization problem. 

 While the theory of topology optimization has reached a 
high level of maturity, one of the practical challenges that 
remain today is large-scale 3-D optimization. Such large-
scale problems can take hours, or even days to complete. 

 The objective of this paper is to introduce a topology 
optimization method, and an implementation that 
dramatically reduces the computational time. The proposed 
method differs from SIMP in that it relies entirely on the 
concept of topological sensitivity. In Section 2, we review 
previous work on large-scale topology optimization. In 
Section 3, we discuss the theoretical and implementation 
aspects of the proposed strategy. In Section 4, numerical 
results are presented, followed by conclusions and open 
issues in Section 5.   

2. LITERATURE REVIEW  

 In this Section, we review, in a chronological order, the 
strategies that have been proposed thus far to address large-
scale 3-D topology optimization.  

 In one of the earliest work in this field [9], the authors 
relied on domain decomposition to parallelize the 
underlying finite element analysis in SIMP. A conjugate 
gradient iterative solver with Jacobi pre-conditioner was 
used to solve the linear system of equations. All 
implementations were carried out on a Cray T3E super 
computer. The authors demonstrated that the sensitivity 
calculations and the optimization process can also be 
parallelized. Topology optimization of 3-D problems with 
1~3 million degrees of freedom, were completed in 3~40 
hours (depending on the specific problem).  

 An alternate strategy based on design-space optimization 
was proposed by [10], where the finite element space is 
expanded as needed during the optimization process. This, 
the authors demonstrate, reduces the overall computational 
work-load, especially during the initial stages. As an 
industrial example, a ‘knuckle-joint’ was optimized, where 
the design starts with about 8000 elements, and is then 
expanded to 134,000 elements, taking a total of 115 hours. 

 In [11], the authors noted that in SIMP based topology 
optimization, as the density drops to zero, the linear system 
becomes ill-conditioned, and iterative solvers such as 
conjugate gradient or MINRES perform poorly. The authors 
therefore propose diagonal rescaling in combination with 
incomplete Cholesky preconditioning to address the ill-
conditioning. Further, the vectors that span the Krylov 
(finite element) space are recycled during the iteration 
process. With these acceleration techniques, the authors 
demonstrated that, using an AMD Opteron TM252 2.6GHz 
64-bit processor, with 8GB RAM, topology optimization 
with about 1 million degrees of freedom can be carried out 
in about 45 hours. 

 The importance of exploiting parallel-computing for 
topology optimization was recognized and explored in [12], 
where the authors used finite element tearing and 
interconnect (FETI) method with primal-dual solver. The 
authors once again identify the challenges posed by low 
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density values in SIMP on the rate of convergence, and 
provide workarounds.  

 In [13], the authors exploit approximate reanalysis, based 
on the combined approximation (CA) method [14] as an 
acceleration technique. Thus, with little or no loss in 
accuracy, a speed-up of 3~5 was achieved in 3-D. 

 In a more recent work [15], the authors implement 
topology optimization, in particular, the conjugate-gradient 
solver, on a graphics programmable unit (GPU). To exploit 
the hardware layout of the GPU, the authors rely on an 
assembly-free implementation of conjugate gradient. Since 
GPUs, at the time of publication of [15] were restricted 
largely to single-precision calculations, the conjugate 
gradient algorithm was modified to prevent accumulation of 
numerical errors. Furthermore, the implementation was 
restricted to a uniform-grid domain space (i.e., box-like 
design space) to exploit the architecture of GPUs. Given 
these restrictions, the authors achieved an impressive 
speed-up between 10~60 on a GeForce GTX280 with 1GB of 
memory compared to an optimized CPU code of the same 
algorithm. Using a GeForce 9800M GT, an older GPU card, 
a topology optimization problem over a 100x100x100 grid 
(i.e., about 3 million degree freedom) was solved in about 2 
hours. The issue of slow convergence in SIMP due to low 
density values was not explicitly addressed. 

 A multi-resolution strategy was proposed in [16], where 
the authors adopt different discretization for finite element, 
density and design variables for SIMP-based optimization. 
This represents a shift in paradigm from the usual SIMP 
implementation. The authors show that one can arrive at 
the same topology for complex 3-D problems with 
significantly reduced computation, offering a new avenue of 
research for SIMP-based topology optimization. Specific 
timings for large-scale topology optimization were not 
provided. 

 Finally, a nested approach was proposed in [17] where by 
choosing convergence criteria (for the iterative solver) that 
are better tuned to the optimization objective (and 
sensitivities), it was shown that one can reduce the 
computational cost by about 60% without losing on 
accuracy. This was followed by the work reported in [18], 
where a single matrix factorization was used for the entire 
design process, in conjunction with iterative corrections. 
Consequently, the computational cost was reduced by one 
order of magnitude without any loss in accuracy. 

 While the focus of this paper is on large-scale topology 
optimization, we mention here recent advances that can 
address the deficiencies of SIMP. These include: (1) use of 
polygonal finite elements [19], [20] that circumvent 
anomalies such as checkerboard patterns, and are more 
adept at capturing optimal geometries, (2) an iso-geometric 
approach [21] where the material density is modeled via 
Non-Uniform Rational B-Spline basis functions, (3) mesh-
independent projection techniques [22] to control internal 
and external feature sizes in topology optimization, and (4) 
combining continuum elements in SIMP with classic beam, 
plate and shell structural elements [23]. 

3. THE PARETO METHOD 

3.1 Overview 

 In this paper, we build upon the 2-D pareto-topology-
optimization (PareTO) method discussed in [24], [25] 
rather than SIMP, for three primary reasons:  

1. PareTO does not rely on densities, i.e., all elements 
are either ‘in’ or ‘out’, and further, all the ‘in’ 
elements remain connected at all times, i.e., there is 
no ‘hanging component’ during the optimization 
process. Consequently, the stiffness matrices are 
inherently better conditioned. This leads to faster 
convergence of iterative solvers, i.e., the cost per 
finite element analysis is reduced, as illustrated later 
under Section 4. 

2. For a desired volume fraction, it was observed in [24] 
that 2-D PareTO required fewer finite element 
operations than SIMP. For example, for the problem 
posed in Figure 1, the PareTO method required about 
half the number of finite element operation as the 
classic SIMP implementation [2].  

3. Most importantly, PareTO, as the name suggests, is 
designed to solve a multi-objective problem: 

  { },
D

Min J
Ω⊂

Ω  (3.1) 

In other words, it can find numerous pareto-optimal 
topologies up to a desired volume fraction with no 
additional cost; see Figure 2. Such pareto-optimal 
topologies can be particularly beneficial to the design 
engineer for large-scale problems where one cannot 
afford to repeatedly solve topology optimization 
problems, at various volume fractions. 

 
Figure 2: The pareto-optimal curve and topologies. 

 Given these inherent advantages, we consider here 
extending the 2-D PareTO method and algorithm to large-
scale 3-D problems. The specific challenges that one faces in 
3-D, and solution strategies are discussed in the remainder 
of this paper. 

3.2 Finite Element Mesh 

 The initial design space can be of arbitrary size and shape, 
and is discretized into tri-linear hexahedral elements; the 
latter offer a good compromise between accuracy and speed. 
Two illustrative examples are shown in Figure 3; the 
example on the left is that of a uniform structured grid, 
while the other is that of a non-uniform grid over an 
arbitrary design space. The ability to handle arbitrary design 
spaces is critical for large scale industrial applications. The 
finite-element shape-functions and element-stiffness 
matrices for tri-linear hexahedral elements can be found, for 
example, in [26]. 
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Figure 3: Examples of domain space discretized via tri-

linear hexahedral/brick elements. 

 Typically, in finite element analysis (FEA), the global 
stiffness matrix K  is assembled prior to a linear-solve.  
However, in the present work, we have chosen an 
‘assembly-free’ (a.k.a. ‘matrix-free’) approach [27] where 
the global stiffness matrix K  is not assembled or stored. 
Instead, only the unique individual element stiffness 
matrices are computed and stored in memory. Not only 
does this reduce the overall memory requirement (this is 
especially important for GPU), it can also accelerate 
topology optimization since FEA is largely memory-
bandwidth limited [28]. 

 Computing the unique elements is trivial if the finite 
element mesh is a uniform grid mesh (see Figure 3a). 
However, consider the non-uniform mesh such as the one in 
Figure 3b. The specific strategy adopted in this paper to 
reduce memory consumption is to exploit congruency of 
mesh-elements. In other words, we only compute and store 
the stiffness matrix of geometrically and materially distinct 
mesh-elements. In the next Section, we describe an 
algorithm for detecting congruency between mesh elements. 

3.3 Mesh-Element Congruency 

 The central question is the following: Given two 
hexahedral elements (such as the ones in Figure 4), will they 
result in the same element matrix? 

 
Figure 4: Two possibly congruent mesh elements. 

 Observe that the element stiffness matrix is rigid-body 
invariant. Thus, assuming, for simplicity, that the material 
properties are the same for both elements, then the two 
elements will yield the same the element stiffness matrix if 
they are geometrically congruent. Towards this end, we 
recall that the following theorem [29]. 

Theorem (Cauchy, 1839): Two convex polyhedra with 
corresponding congruent and similarly situated faces have 
equal corresponding dihedral angles. 

The theorem essentially states that 12 edge-length 
measurements are sufficient to establish congruency. 
Towards this end, a hashing function [30] is created that 
takes 12 doubles, and returns a long integer; the latter is 
referred to as the element-signature Various hashing 
functions can be constructed [30]; in this paper, a weighted 
average of the edge-lengths is used. Consequently, two 
elements are congruent if their element-signatures are 
identical (to desired precision). Thus, we first compute the 
element-signatures and perform a sorting operation to 
identify congruency. Only the element stiffness matrices of 
distinct elements are computed and stored. This step needs 

to be performed once at the beginning of topology 
optimization. 

3.4 Matrix-Free Krylov Iterations 

 A matrix-free implementation of Krylov-space algorithms 
for solving a linear system of equations is straight-forward 
[27]. Specifically, all Krylov-space algorithms require a 

matrix-vector multiplication Ku  where K is the global 

stiffness matrix and u  is the global solution vector. In a 

matrix-free implementation, we have: 

 
 

= = 
 
∑ ∑e e e

e e

Ku K u K u  (3.2) 

 A particular Krylov-space algorithm namely, the Jacobi-
preconditioned conjugate-gradient (Jacobi-PCG) method 
[31] is employed here. Alternate pre-conditioners such as 
incomplete-LU can reduce the total number of iterations, 
but their overall benefit in a highly parallel environment is 
questionable since the cost of incomplete-LU factorization 
can dominate in large-scale problems. Furthermore, in the 
PareTO method, the stiffness matrix is well-conditioned, 
and consequently, even the simple Jacobi-PCG converges 
rapidly, and is well suited for multi-core architectures. 
Details of convergence are provided in Section 4. 

3.5 Topological Sensitivity Computation 

 Once FEA is carried out in an assembly-free manner, the 
topological sensitivity in each mesh-element is computed as 
described below.  

 Topological sensitivity captures the first order impact of 
inserting a small circular hole within a domain on various 
quantities of interest. This concept has its roots in the 
influential paper by Eschenauer, et. al. [32], and has later 
been extended and explored by numerous authors [33–37]. 
Generalization of topological sensitivity to arbitrary features 
has been addressed, for example, in [38–40].  

 For compliance J  of a 2-D plane-stress problem, a 

closed-form expression for the topological sensitivity is 
given by [41]: 
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Thus, given the stress and strain field in a domain, one can 
compute the topological sensitivity field (that is location 
dependent). Figure 5 illustrates the topological sensitivity 

(TS) field for the full-domain D  for the problem in Figure 
1a. Observe that, at the bottom-right, the TS-field is ‘0’, 
implying that removing material at that point has little 
impact on the compliance. On the other hand, the TS-field 
at bottom left is approximately 1.0 unit, implying that 
inserting a hole at that point will increase the compliance by 
1 unit (multiplied by the size of the hole). 

 

Figure 5: A (scaled) compliance topological sensitivity field 
for the problem in Figure 1a. 
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The generality of the proposed method is inherited from the 
generality of the topological sensitivity field; the latter is 
well-defined, and can be computed for various quantities of 
interest In 3-D, the topological sensitivity field for 
compliance is given by [34]: 

 20 : (3 2 ) ( ) ( )tr trµσ ε λ µ σ ε= − − −T  (3.4) 

where &µ λ  are the Lame parameters.  

For eigen-value problems, one can show that [42], [43]: 

 
22:σ ε ω ρ= −T n nu  (3.5) 

where ρ  is the material density, σ  & ε  are the stress & 

strain tensors, and ω
n
 is the corresponding eigen-value. 

Figure 6 illustrates the TS field corresponding to the 1st 

eigen-mode of the domain of Figure 1a, with 1ρ = . The 

similarities between Figure 6 and Figure 5 are worth noting. 

 

Figure 6: A (scaled) topological sensitivity field for the 1st 
eigen-mode for the domain in Figure 1a. 

3.6 Topological Sensitivity Field as a Level-Set
  A naïve approach to exploiting topological sensitivity (TS) 

field is to ‘kill’ mesh-elements with low TS values. However, 
this leads to instability and checker-board patterns. 
Alternately, one can exploit the TS field, in conjunction with 
other level-set fields to introduce holes during the topology 
optimization process [44]. Finally, the authors in [45], use 
the TS field with conjunction with fictitious domain method 
to enhance the convergence of topology optimization.  

 Here we propose an alternate and a more powerful 
approach where one directly exploits the TS field as a level-
set. To illustrate, Figure 7 shows the compliance TS field of 
Figure 5 as 3-dimensional surfaces. Also illustrated in 

Figure 7 are two cutting planes corresponding to 0.01τ =  

and 0.03τ = , respectively. 

 
Figure 7: TS-fields and cutting-planes 0.01τ =  and 0.03τ = . 

As with any level-set, the cutting-planes induce a domain 
τΩ  defined per: 

 { | ( ) }p p
τ τΩ = >T �  (3.6) 

In other words, the domain τΩ  is the set of all points where 
the TS field exceeds the prescribed value of τ . The induced 
domains τΩ , corresponding to 0.01τ =  and 0.03τ =  are 

illustrated in Figure 8. Observe how portions of the domain 
with low TS values have been eliminated. 

 
Figure 8: The induced domains τΩ  corresponding to 

0.01τ =  and 0.03τ = . 

If 0τ =  (the lowest value of the TS field in this instance), 

then τΩ  will coincide with Ω . The notion of a ‘cutting-
plane’ generalizes to a cutting-manifold in 3-D, and 
Equation (3.6) applies to 3-D as well. The PareTO algorithm 
discussed in the next Section relies on computing the value 
of τ  for a desired volume fraction through a fixed-point 

iteration (proposed in [37], and also adopted in [45]). 

3.7 PareTO Algorithm
  We now have the necessary ingredient to address the 

overall PareTO algorithm illustrated in Figure 9; each of the 
steps is described below.  

 
Figure 9: Proposed 3-D topology optimization algorithm. 

1. We start with DΩ = , i.e., we start with a volume 
fraction of 1.0. Observe that this is different from SIMP, 
where a constant density ρ  is assigned to the design-

space D  such that the ‘apparent’ volume fraction 
throughout the optimization process is 

0v . The cutting-

plane parameter  τ  is initialized to zero. 

2. Next, we carry out a finite element analysis on D  and 
compute the TS field as discussed earlier. 

3. If the desired volume fraction has been reached, the 
iso-surface with the current cutting-plane value τ  is 
extracted. For iso-surface extraction, we rely on the 
classic marching-cubes algorithm described in [46], 
where the TS values at the corner nodes of the hex 
mesh are used to extract the iso-surface. 

4. (Else) We decrement the current volume fraction by 

v∆ ; v∆  is initialized to 0.05, but this is controlled in 

an adaptive fashion (see step 8 below). 
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5. Given the current TS field and the target volume 

fraction, we seek the parameter τ  such that τΩ  is 

equal to the target volume fraction. This is a simple 
binary-search algorithm where maximum and 
minimum values of the TS-field serve as the limits of 
the binary search.  

6. Once the desired value of τ  has been computed, a finite 

element analysis is carried out on τΩ (where elements 
that lie outside are not included in the FEA) and, the TS 
field is recomputed. 

7. If the τ  value has converged (to within user defined 
accuracy) we return to Step-3. If the parameter has not 
yet converged, we return to Step 5, after performing the 
check below to ensure that the optimization process is 
not diverging.  

8. If a very large step size v∆  is specified by the user, the 

above process may diverge. If this is detected (by 

diverging values of compliance), the value of v∆  is 

reduced by a factor of 2, prior to returning to Step 5. 

4. NUMERICAL EXPERIMENTS 

 In this Section, we present results from numerical 
experiments based on the above algorithm. The default 
parameters are as follows: 

• As described earlier, the domain D  can be of arbitrary 
shape and size, and is discretized via tri-linear 
hex/brick elements; the elements conform to the 
boundary of D  (unless otherwise noted). 

• The material properties are 1E =  and 0.3ν =  

• The residual for the preconditioned conjugate gradient 
is set to 1e-8, unless otherwise noted. 

• The volume step-size (Step-1 of see Figure 9) was set to 
0.05, unless otherwise noted. 

• In Step-7 of the algorithm (see Figure 9), the fixed-
point iteration is assumed to have converged if the 
change in compliance is less than 1%. 

All experiments were conducted on a Windows 7 64-bit 
machine with the following hardware: 

• Intel I7 960 CPU quad-core running at 3.2GHz with 6 
GB of memory; parallelization of CPU code was 
implemented through OpenMP commands. 

• The graphics programmable unit (GPU) is an Nvidia 
GeForce GTX 480 (480 cores) with 1.5 GB. 

• Both the CPU and GPU were configured to run in 
double-precision. 

4.1 Point-Load Cantilever: CG Iterations 

 The first experiment involves the classic cantilever beam 
illustrated in Figure 10, where one end of the beam is fixed, 
while a tip load is applied at the other end. A typical hex-
mesh consisting of 32x16x16 elements is shown in Figure 
10, i.e., with 28611 degrees of freedom (DOF). 

 
Figure 10: The cantilevered beam problem and hex-mesh. 

The optimal topology for a volume fraction of 0.5 was 
computed with a step-size of 0.05 using the CPU and GPU 
(two independent runs); Figure 11 illustrates the optimal 
topology, with a compliance of 4.88 units; identical results 
were obtained from CPU and GPU. 

 On the CPU, the optimal topology was computed in 9.04 
seconds. On the GPU, the computational time was reduced 
to 6.04 seconds, i.e., overall speed-up was approximately 
1.5. Both implementations are otherwise identical, requiring 
30 finite element iterations, in total. 

 
Figure 11: Optimal topology for a volume fraction of 0.5 

(side and rear views). 
 In the PareTO method, recall that an element is either ‘in’ 
or ‘out’, i.e., there is no concept of density. However, we 
artificially forced the relative-density of ‘out’ elements to 

0.005, i.e., 7

0
1.25E e E

−=  and studied the convergence. 

 Figure 12 illustrates the impact of this change on the CG 
iterations across the 30 finite element runs. A pure ‘in/out’ 
approach requires an almost constant number of iterations, 
i.e., CG is relatively insensitive to the absence of material. 
On the other hand, with a non-zero density, the number of 
CG iterations increases as elements are removed from the 
design space. This can be observed in Figure 12. One can 
also observe the oscillation in the number of iterations. This 
is consistent with the algorithm in Figure 9 since the 
solution is recycled in Steps 5 through Step 8, and therefore 
fewer CG iterations are needed. This experiment highlights 
one the primary advantages of the PareTO method. 

 
Figure 12: Impact of density on CG iterations. 
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4.2 Point-Load Cantilever: Verification 

 The dimensions of the above cantilevered beam problem 
were modified as shown in Figure 13; this corresponds to 
the problem considered in [9]. The mesh now consists of 
128x80x24 elements, i.e., 783,675 DOF.  

 
Figure 13: The cantilevered beam problem and hex-mesh 

with 783K DOF. 
Figure 14 illustrates the computed and published topologies 
[9] for a volume fraction of 0.5. While the overall shape is 
similar, the detailed topologies are different. This is not 
surprising since: (1) it is well known that topology 
optimization does not yield unique solutions, and (2) the 
algorithms are fundamentally different, and (3) so are the 
convergence criteria, iso-surface extraction, etc.  

 The time reported in [9] for solving this problem, by 
exploiting symmetry, is 3.9 hours. In the present work, with 
a volume step-size of 0.05, the computational times are as 
follows: 16 minutes (CPU) and 125 seconds (GPU); we did 
not exploit symmetry. 

   
Figure 14: (a) Computed topology, (b) computed by [9]. 

The initial compliance computed in the present work is 1 
unit, and the final compliance is 1.47 units; the compliance 
was not reported in [9]. The compliance versus volume 
fraction for the present work is illustrated in Figure 15. Note 
that typically 3 finite element iterations are required to 
move from one volume step to the next. For this problem, a 
total of 29 finite elements operations are required. 

 
Figure 15: Compliance versus volume fraction pareto-curve. 

4.3 Edge-Load Cantilever: Verification 

 The next experiment involves the domain illustrated in 
Figure 16, consisting of 84x28x14 elements, i.e., 110925 
DOF; this problem was considered in [11]. 

 
Figure 16: Edge-loaded cantilevered beam and hex-mesh 

with 110925 DOF. 
Figure 17 illustrates the topology computed here for a 
volume fraction of 0.5. The final topology was computed 
after 26 finite element operations, in 200 seconds on the 
CPU, and 44.8 seconds, on the GPU. The ratio of final to 
initial compliance is 1.37. The computational time reported 
in [11] is 2.4 hours. 

 
Figure 17: Optimal topology for the problem in Figure 10, 
obtained in 200 seconds (CPU) and 44.8 seconds (GPU). 
4.4 Bridge Design: Pareto Topologies 

 We now consider the bridge problem illustrated in Figure 
18, where a uniform load is applied on a horizontal layer, 
and the design space is supported at four symmetric points 
at a distance of 8 units from the two ends. A hex-mesh with 
approximately 113,000 dof is also shown in Figure 18. 

 
(a) Bridge dimensions. 

 
(b) Hex mesh with 113,000 dof. 

Figure 18: The bridge problem. 
Figure 19 illustrates the optimal bridge for a volume fraction 
of 0.35. The final topology was computed after 32 finite 
element operations, in 120 seconds on the CPU, and 36.2 
seconds, on the GPU. For visual comparison, Figure 17 also 
illustrates the Oregon City Bridge spanning the Willamette 
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River; the similarities are striking. Such observations have 
been made by other authors as well [16]. 

 
(a) Optimal bridge for volume fraction of 0.35 

  
(b) Oregon city bridge. 

Figure 19: Simulated and real bridge designs.  
 Recall that the PareTO method computes all optimal 
topologies up to a desired volume fraction, at no additional 
cost. Figure 20 illustrates the computed bridge for a volume 
fraction of 0.40. 

 
Figure 20: Optimal bridge for a volume fraction of 0.40 

4.5 Knuckle Design: Non-uniform Hex-mesh 

 To illustrate the generality of the implementation, we 
consider optimizing the topology of a ‘knuckle’ illustrated in 
Figure 21a. Unlike the previous examples, the hex-mesh is 
irregular and consists of 20160 degrees of freedom; the 
mesh was created using Abaqus, a commercial FEA system. 
Figure 21b illustrates the optimal topology for a volume 
fraction of 0.55. The total computational times are 109 
seconds (CPU) and 42 seconds (GPU). 

  
Figure 21: (a) A knuckle problem and (b) optimal topology 

4.6 Stool Design: Insensitivity to Mesh-Size 

 Next we study the impact of discretization on the final 
topology. As a specific example, we consider the ‘stool 
design’ problem illustrated in Figure 22 where the vertical 
displacement of the four corners is restrained, and a vertical 
force is applied at the center as shown. In addition, to 
eliminate singularity, the horizontal displacements of the 
one of the corners are also restrained. This problem was 
also solved by the authors in [9]. 

 
Figure 22: Stool design problem. 

The domain was discretized into NxNxN elements where N 
was varied. Figure 23 illustrates the optimal designs for a 
volume fraction of 0.2, with a step-size of 0.10, for four 
different values of N. The GPU computing time, and final-
to-initial compliance ratio for each case is also listed.  

  
(a) N=16; t=5.8s;J/J0=1.85  (b) N=32; t=19s; J/J0=1.43 

  
(c) N=64; t=185s; J/J0=1.39   (d) N=96; t=850s; J/J0=1.39      

Figure 23: Optimal stool-designs   
Besides a refinement in topology and detail, the algorithm 
leads to similar designs. The speed-up offered by the GPU 
over the CPU varied from 1.5 for N =16, to 6, for N = 96.  

4.7 Table Design: Insensitivity to Step-Size 

 In the PareTO algorithm of Figure 9 we start with an 
initial step-size of 0.05. Here, we highlight the adaptive 
nature of the algorithm if a different step-size is prescribed. 
In other words, suppose the user specifies a step-size of 0.25 
in order to accelerate computation, the algorithm may fail to 
converge in the first attempt. This is automatically detected, 
and the algorithm makes a second attempt with a step-size 
of 0.125 and so on. 
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 As a specific example, consider the ‘table design’ problem 
illustrated in Figure 24 where the four corners are 
restrained, and a vertical pressure is applied on the top-face. 

 
Figure 24: Table design problem. 

The domain is discretized into 8*80*80 elements. Figure 25 
illustrates the optimal topologies for a volume fraction of 
0.2, with two different initial step-sizes. Observe that, the 
computational time is larger with a larger initial step-size 
since numerous FEA are ‘wasted’ initially. However, in both 
cases, the final topologies are almost identical with a 
compliance difference of less than 1%. 

 
(a) 

0 0.50ν∆ = ; t=93 secs; J = 5.82. 

 
(b) 

0 0.05ν∆ = ; t=71 secs; J = 5.76. 

Figure 25: Optimal table-designs for volume fraction of 0.2 
Since the computational cost can prohibit extremely small 
steps, we recommend an initial step size of 0.05. If the 
method fails to converge for this step-size, a smaller step 
will be taken in an adaptive fashion. Further theoretical 
investigation is required to understand the impact of step-
size on the final topology and objective function.  

4.8 Case Study: Airline Passenger Seat Frame 

 Next consider the design of an airline passenger seat 
frame illustrated schematically in Figure 26 [47]. While air-
frames must meet numerous objectives: low mass, high 
stiffness, crash-worthiness, low-cost, etc., we focus here on 
weight and compliance minimization.  

 
Figure 26: A schematic of a passenger airline frame. 

The initial geometry is illustrated in Figure 27a (all linear 
units in mm); the material is chosen to be 1060 aluminum 

( 69 ; 0.33E GPa υ= = ). The applied boundary conditions 

are illustrated in Figure 27b where it is assumed that the 
load on the horizontal plane to back-support is in the ratio 
4:1. The front edge is fixed, while the back edge is fixed in 
the vertical direction.  

  
Figure 27: (a) The initial design space and (b) Boundary 

conditions for a seat-frame. 

The geometry was discretized using a non-conforming 
uniform grid, resulting in 56,000 elements and 63,000 
nodes, i.e., 189,000 degrees of freedom. 

 Designs for various volume fractions were obtained; two 
of which are illustrated in Figure 28 for volume fraction of 
0.3 and 0.20. Observe that the 0.30 design is closed at the 
back, and does not provide access to the space underneath 
and therefore undesirable. Other manufacturing and 
ergonomic constraints must be included to improve the 
final design. 

     
Figure 28: Optimal seat frames for fractions of 0.3 and 0.2. 

4.9 Summary of Computational Times 

  In Table 1, we summarize results for some of the large-
scale examples, and compare them against published data, 
wherever available. The PareTO columns include: (i) the 
total number of FEA iterations taken to reach the final 
volume fraction, (ii) the ratio of final to initial compliance, 
(iii) the CPU time and (iv) the GPU time.  

 Both the CPU and GPU implementations are restricted by 
available memory. In the GPU, with 1.5 GB of memory, the 
tip-cantilever problem, with 15 million degrees of freedom, 
was solved in 2 hours. In the CPU, with 6 GB of memory, 
the same problem, but with 92 million degrees of freedom 
was solved in approximately 12 days (as summarized 
below).  
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Table 1: Summary of computing times and compliances. 
Name of 
part & 
volume 
fraction 

DOF Pub. 
Data 

 

PareTO 

#FEA 

0

J

J
 
CPU GPU 

Cantilever 
Beam; 
Edge 
(0.50) 

110K 2.4 hr, 
#FEA: 
139 [11]   

26 1.37 200 
secs 

45 
secs 

Knuckle 
(0.55) 

20K -- 24 1.23 111 
secs 

44 
secs 

Bridge 
(0.35) 

113K -- 32 1.45 2 
mins 

36.2 
secs 

Stool; 
N=96 
(0.20) 

2.7M 21.8 hr; 
#FEA: 
703  
[9]; 

23 1.43 1 hr, 
24 
mins 

14 
mins 

 

 

Point 
Load 
Cantilever 
(0.50) 

783K 3.9 hr, 
#FEA: 
470  
[9]; 

29 1.47 16 
mins 

125 s 

15M - 22 1.53 19hr, 
28 
mins  

2hr, 
12 

mins 

92M - 23 1.52 12 
days, 
2hr 

- 

5. CONCLUSIONS 

 The main contribution of the paper is an efficient, and yet 
simple algorithm for large scale 3-D topology optimization. 
As illustrated via numerical examples, the proposed 
algorithm and implementation is 1~2 orders of magnitude 
faster than previously published literature. Readers may 
download PareTO from www.ersl.wisc.edu.  

 The work presented here has largely focused on 
compliance minimization. However, as demonstrated, the 
PareTO method is applicable for other problems as well 
[43]. It remains to be seen if this can be successfully 
extended to other classes of problems. Further, we have not 
attempted here to demonstrate either the parallel or 
numerical scalability of the method [12], and we have used a 
simple Jacobi preconditioned conjugate gradient; we hope 
to address these limitations in the future. Indeed, if the 
acceleration techniques reviewed earlier in the paper can be 
incorporated, the method can perhaps be further improved.  

 Nonlinear problems in topology optimization have 
received significant attention lately [48]. Extending PareTO 
to such nonlinear problems is a promising avenue since the 
topological sensitivity concept has been generalized to 
nonlinear problems as well [49]. 
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