
Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

Efficient Generation of Large-Scale Pareto-Optimal Topologies
Krishnan Suresh

University of Wisconsin, Madison

suresh@engr.wisc.edu

Abstract

 The objective of this paper is to introduce an efficient
algorithm and implementation for large-scale 3-D topology
optimization. The proposed algorithm is an extension of a
recently proposed 2-D topological-sensitivity based method
that can generate numerous pareto-optimal topologies up to
a desired volume fraction, in a single pass.

 In this paper, we show how the computational challenges
in 3-D can be overcome. In particular, we consider an
arbitrary 3-D domain-space that is discretized via
hexahedral/brick finite elements. Exploiting congruence
between elements, we propose a matrix-free
implementation of the finite element method. The latter
exploits modern multi-core architectures to efficiently solve
topology optimization problems involving millions of
degrees of freedom. The proposed methodology is
illustrated through numerical experiments; comparisons are
made against previously published results.

1. INTRODUCTION

 Consider the topology optimization problem:

0

D
Min J

v D

Ω⊂

Ω =
 (1.1)

where:

0

: Compliance

: Geometry/topology to be computed

: Desired volume fraction

: Region within which the geometry must lie

J

v

D

Ω
 (1.2)

Various methods such as homogenization [1], Solid
Isotropic Material with Penalization (SIMP) [2] and level-
set [3–6], have been proposed to solve such problems.
These methods can systematically generate insightful
topologies for complex engineering problems; see [7] and
[8] for a review. For example, Figure 1a illustrates a plane-
stress problem over a domain space D , with unit force; the

material properties are: 1E = and 0.3ν = . An optimal

topology Ω , generated via SIMP, for a volume fraction of
0.5 is illustrated in Figure 1b.

(a) Topology optimization problem

(b) Optimal topology for a volume fraction of 0.5

Figure 1: A typical topology optimization problem.

 While the theory of topology optimization has reached a
high level of maturity, one of the practical challenges that
remain today is large-scale 3-D optimization. Such large-
scale problems can take hours, or even days to complete.

 The objective of this paper is to introduce a topology
optimization method, and an implementation that
dramatically reduces the computational time. The proposed
method differs from SIMP in that it relies entirely on the
concept of topological sensitivity. In Section 2, we review
previous work on large-scale topology optimization. In
Section 3, we discuss the theoretical and implementation
aspects of the proposed strategy. In Section 4, numerical
results are presented, followed by conclusions and open
issues in Section 5.

2. LITERATURE REVIEW

 In this Section, we review, in a chronological order, the
strategies that have been proposed thus far to address large-
scale 3-D topology optimization.

 In one of the earliest work in this field [9], the authors
relied on domain decomposition to parallelize the
underlying finite element analysis in SIMP. A conjugate
gradient iterative solver with Jacobi pre-conditioner was
used to solve the linear system of equations. All
implementations were carried out on a Cray T3E super
computer. The authors demonstrated that the sensitivity
calculations and the optimization process can also be
parallelized. Topology optimization of 3-D problems with
1~3 million degrees of freedom, were completed in 3~40
hours (depending on the specific problem).

 An alternate strategy based on design-space optimization
was proposed by [10], where the finite element space is
expanded as needed during the optimization process. This,
the authors demonstrate, reduces the overall computational
work-load, especially during the initial stages. As an
industrial example, a ‘knuckle-joint’ was optimized, where
the design starts with about 8000 elements, and is then
expanded to 134,000 elements, taking a total of 115 hours.

 In [11], the authors noted that in SIMP based topology
optimization, as the density drops to zero, the linear system
becomes ill-conditioned, and iterative solvers such as
conjugate gradient or MINRES perform poorly. The authors
therefore propose diagonal rescaling in combination with
incomplete Cholesky preconditioning to address the ill-
conditioning. Further, the vectors that span the Krylov
(finite element) space are recycled during the iteration
process. With these acceleration techniques, the authors
demonstrated that, using an AMD Opteron TM252 2.6GHz
64-bit processor, with 8GB RAM, topology optimization
with about 1 million degrees of freedom can be carried out
in about 45 hours.

 The importance of exploiting parallel-computing for
topology optimization was recognized and explored in [12],
where the authors used finite element tearing and
interconnect (FETI) method with primal-dual solver. The
authors once again identify the challenges posed by low

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

density values in SIMP on the rate of convergence, and
provide workarounds.

 In [13], the authors exploit approximate reanalysis, based
on the combined approximation (CA) method [14] as an
acceleration technique. Thus, with little or no loss in
accuracy, a speed-up of 3~5 was achieved in 3-D.

 In a more recent work [15], the authors implement
topology optimization, in particular, the conjugate-gradient
solver, on a graphics programmable unit (GPU). To exploit
the hardware layout of the GPU, the authors rely on an
assembly-free implementation of conjugate gradient. Since
GPUs, at the time of publication of [15] were restricted
largely to single-precision calculations, the conjugate
gradient algorithm was modified to prevent accumulation of
numerical errors. Furthermore, the implementation was
restricted to a uniform-grid domain space (i.e., box-like
design space) to exploit the architecture of GPUs. Given
these restrictions, the authors achieved an impressive
speed-up between 10~60 on a GeForce GTX280 with 1GB of
memory compared to an optimized CPU code of the same
algorithm. Using a GeForce 9800M GT, an older GPU card,
a topology optimization problem over a 100x100x100 grid
(i.e., about 3 million degree freedom) was solved in about 2
hours. The issue of slow convergence in SIMP due to low
density values was not explicitly addressed.

 A multi-resolution strategy was proposed in [16], where
the authors adopt different discretization for finite element,
density and design variables for SIMP-based optimization.
This represents a shift in paradigm from the usual SIMP
implementation. The authors show that one can arrive at
the same topology for complex 3-D problems with
significantly reduced computation, offering a new avenue of
research for SIMP-based topology optimization. Specific
timings for large-scale topology optimization were not
provided.

 Finally, a nested approach was proposed in [17] where by
choosing convergence criteria (for the iterative solver) that
are better tuned to the optimization objective (and
sensitivities), it was shown that one can reduce the
computational cost by about 60% without losing on
accuracy. This was followed by the work reported in [18],
where a single matrix factorization was used for the entire
design process, in conjunction with iterative corrections.
Consequently, the computational cost was reduced by one
order of magnitude without any loss in accuracy.

 While the focus of this paper is on large-scale topology
optimization, we mention here recent advances that can
address the deficiencies of SIMP. These include: (1) use of
polygonal finite elements [19], [20] that circumvent
anomalies such as checkerboard patterns, and are more
adept at capturing optimal geometries, (2) an iso-geometric
approach [21] where the material density is modeled via
Non-Uniform Rational B-Spline basis functions, (3) mesh-
independent projection techniques [22] to control internal
and external feature sizes in topology optimization, and (4)
combining continuum elements in SIMP with classic beam,
plate and shell structural elements [23].

3. THE PARETO METHOD

3.1 Overview

 In this paper, we build upon the 2-D pareto-topology-
optimization (PareTO) method discussed in [24], [25]
rather than SIMP, for three primary reasons:

1. PareTO does not rely on densities, i.e., all elements
are either ‘in’ or ‘out’, and further, all the ‘in’
elements remain connected at all times, i.e., there is
no ‘hanging component’ during the optimization
process. Consequently, the stiffness matrices are
inherently better conditioned. This leads to faster
convergence of iterative solvers, i.e., the cost per
finite element analysis is reduced, as illustrated later
under Section 4.

2. For a desired volume fraction, it was observed in [24]
that 2-D PareTO required fewer finite element
operations than SIMP. For example, for the problem
posed in Figure 1, the PareTO method required about
half the number of finite element operation as the
classic SIMP implementation [2].

3. Most importantly, PareTO, as the name suggests, is
designed to solve a multi-objective problem:

 { },
D

Min J
Ω⊂

Ω (3.1)

In other words, it can find numerous pareto-optimal
topologies up to a desired volume fraction with no
additional cost; see Figure 2. Such pareto-optimal
topologies can be particularly beneficial to the design
engineer for large-scale problems where one cannot
afford to repeatedly solve topology optimization
problems, at various volume fractions.

Figure 2: The pareto-optimal curve and topologies.

 Given these inherent advantages, we consider here
extending the 2-D PareTO method and algorithm to large-
scale 3-D problems. The specific challenges that one faces in
3-D, and solution strategies are discussed in the remainder
of this paper.

3.2 Finite Element Mesh

 The initial design space can be of arbitrary size and shape,
and is discretized into tri-linear hexahedral elements; the
latter offer a good compromise between accuracy and speed.
Two illustrative examples are shown in Figure 3; the
example on the left is that of a uniform structured grid,
while the other is that of a non-uniform grid over an
arbitrary design space. The ability to handle arbitrary design
spaces is critical for large scale industrial applications. The
finite-element shape-functions and element-stiffness
matrices for tri-linear hexahedral elements can be found, for
example, in [26].

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

Figure 3: Examples of domain space discretized via tri-

linear hexahedral/brick elements.

 Typically, in finite element analysis (FEA), the global
stiffness matrix K is assembled prior to a linear-solve.
However, in the present work, we have chosen an
‘assembly-free’ (a.k.a. ‘matrix-free’) approach [27] where
the global stiffness matrix K is not assembled or stored.
Instead, only the unique individual element stiffness
matrices are computed and stored in memory. Not only
does this reduce the overall memory requirement (this is
especially important for GPU), it can also accelerate
topology optimization since FEA is largely memory-
bandwidth limited [28].

 Computing the unique elements is trivial if the finite
element mesh is a uniform grid mesh (see Figure 3a).
However, consider the non-uniform mesh such as the one in
Figure 3b. The specific strategy adopted in this paper to
reduce memory consumption is to exploit congruency of
mesh-elements. In other words, we only compute and store
the stiffness matrix of geometrically and materially distinct
mesh-elements. In the next Section, we describe an
algorithm for detecting congruency between mesh elements.

3.3 Mesh-Element Congruency

 The central question is the following: Given two
hexahedral elements (such as the ones in Figure 4), will they
result in the same element matrix?

Figure 4: Two possibly congruent mesh elements.

 Observe that the element stiffness matrix is rigid-body
invariant. Thus, assuming, for simplicity, that the material
properties are the same for both elements, then the two
elements will yield the same the element stiffness matrix if
they are geometrically congruent. Towards this end, we
recall that the following theorem [29].

Theorem (Cauchy, 1839): Two convex polyhedra with
corresponding congruent and similarly situated faces have
equal corresponding dihedral angles.

The theorem essentially states that 12 edge-length
measurements are sufficient to establish congruency.
Towards this end, a hashing function [30] is created that
takes 12 doubles, and returns a long integer; the latter is
referred to as the element-signature Various hashing
functions can be constructed [30]; in this paper, a weighted
average of the edge-lengths is used. Consequently, two
elements are congruent if their element-signatures are
identical (to desired precision). Thus, we first compute the
element-signatures and perform a sorting operation to
identify congruency. Only the element stiffness matrices of
distinct elements are computed and stored. This step needs

to be performed once at the beginning of topology
optimization.

3.4 Matrix-Free Krylov Iterations

 A matrix-free implementation of Krylov-space algorithms
for solving a linear system of equations is straight-forward
[27]. Specifically, all Krylov-space algorithms require a

matrix-vector multiplication Ku where K is the global

stiffness matrix and u is the global solution vector. In a

matrix-free implementation, we have:

 

= = 
 
∑ ∑e e e

e e

Ku K u K u (3.2)

 A particular Krylov-space algorithm namely, the Jacobi-
preconditioned conjugate-gradient (Jacobi-PCG) method
[31] is employed here. Alternate pre-conditioners such as
incomplete-LU can reduce the total number of iterations,
but their overall benefit in a highly parallel environment is
questionable since the cost of incomplete-LU factorization
can dominate in large-scale problems. Furthermore, in the
PareTO method, the stiffness matrix is well-conditioned,
and consequently, even the simple Jacobi-PCG converges
rapidly, and is well suited for multi-core architectures.
Details of convergence are provided in Section 4.

3.5 Topological Sensitivity Computation

 Once FEA is carried out in an assembly-free manner, the
topological sensitivity in each mesh-element is computed as
described below.

 Topological sensitivity captures the first order impact of
inserting a small circular hole within a domain on various
quantities of interest. This concept has its roots in the
influential paper by Eschenauer, et. al. [32], and has later
been extended and explored by numerous authors [33–37].
Generalization of topological sensitivity to arbitrary features
has been addressed, for example, in [38–40].

 For compliance J of a 2-D plane-stress problem, a

closed-form expression for the topological sensitivity is
given by [41]:

2

4 1 3
() : () ()

1 1
p tr tr

ν
σ ε σ ε

ν ν
−

= −
+ −

T � (3.3)

Thus, given the stress and strain field in a domain, one can
compute the topological sensitivity field (that is location
dependent). Figure 5 illustrates the topological sensitivity

(TS) field for the full-domain D for the problem in Figure
1a. Observe that, at the bottom-right, the TS-field is ‘0’,
implying that removing material at that point has little
impact on the compliance. On the other hand, the TS-field
at bottom left is approximately 1.0 unit, implying that
inserting a hole at that point will increase the compliance by
1 unit (multiplied by the size of the hole).

Figure 5: A (scaled) compliance topological sensitivity field
for the problem in Figure 1a.

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

The generality of the proposed method is inherited from the
generality of the topological sensitivity field; the latter is
well-defined, and can be computed for various quantities of
interest In 3-D, the topological sensitivity field for
compliance is given by [34]:

 20 : (3 2) () ()tr trµσ ε λ µ σ ε= − − −T (3.4)

where &µ λ are the Lame parameters.

For eigen-value problems, one can show that [42], [43]:

22:σ ε ω ρ= −T n nu (3.5)

where ρ is the material density, σ & ε are the stress &

strain tensors, and ω
n
 is the corresponding eigen-value.

Figure 6 illustrates the TS field corresponding to the 1st

eigen-mode of the domain of Figure 1a, with 1ρ = . The

similarities between Figure 6 and Figure 5 are worth noting.

Figure 6: A (scaled) topological sensitivity field for the 1st
eigen-mode for the domain in Figure 1a.

3.6 Topological Sensitivity Field as a Level-Set
 A naïve approach to exploiting topological sensitivity (TS)

field is to ‘kill’ mesh-elements with low TS values. However,
this leads to instability and checker-board patterns.
Alternately, one can exploit the TS field, in conjunction with
other level-set fields to introduce holes during the topology
optimization process [44]. Finally, the authors in [45], use
the TS field with conjunction with fictitious domain method
to enhance the convergence of topology optimization.

 Here we propose an alternate and a more powerful
approach where one directly exploits the TS field as a level-
set. To illustrate, Figure 7 shows the compliance TS field of
Figure 5 as 3-dimensional surfaces. Also illustrated in

Figure 7 are two cutting planes corresponding to 0.01τ =

and 0.03τ = , respectively.

Figure 7: TS-fields and cutting-planes 0.01τ = and 0.03τ = .

As with any level-set, the cutting-planes induce a domain
τΩ defined per:

 { | () }p p
τ τΩ = >T � (3.6)

In other words, the domain τΩ is the set of all points where
the TS field exceeds the prescribed value of τ . The induced
domains τΩ , corresponding to 0.01τ = and 0.03τ = are

illustrated in Figure 8. Observe how portions of the domain
with low TS values have been eliminated.

Figure 8: The induced domains τΩ corresponding to

0.01τ = and 0.03τ = .

If 0τ = (the lowest value of the TS field in this instance),

then τΩ will coincide with Ω . The notion of a ‘cutting-
plane’ generalizes to a cutting-manifold in 3-D, and
Equation (3.6) applies to 3-D as well. The PareTO algorithm
discussed in the next Section relies on computing the value
of τ for a desired volume fraction through a fixed-point

iteration (proposed in [37], and also adopted in [45]).

3.7 PareTO Algorithm
 We now have the necessary ingredient to address the

overall PareTO algorithm illustrated in Figure 9; each of the
steps is described below.

Figure 9: Proposed 3-D topology optimization algorithm.

1. We start with DΩ = , i.e., we start with a volume
fraction of 1.0. Observe that this is different from SIMP,
where a constant density ρ is assigned to the design-

space D such that the ‘apparent’ volume fraction
throughout the optimization process is

0v . The cutting-

plane parameter τ is initialized to zero.

2. Next, we carry out a finite element analysis on D and
compute the TS field as discussed earlier.

3. If the desired volume fraction has been reached, the
iso-surface with the current cutting-plane value τ is
extracted. For iso-surface extraction, we rely on the
classic marching-cubes algorithm described in [46],
where the TS values at the corner nodes of the hex
mesh are used to extract the iso-surface.

4. (Else) We decrement the current volume fraction by

v∆ ; v∆ is initialized to 0.05, but this is controlled in

an adaptive fashion (see step 8 below).

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

5. Given the current TS field and the target volume

fraction, we seek the parameter τ such that τΩ is

equal to the target volume fraction. This is a simple
binary-search algorithm where maximum and
minimum values of the TS-field serve as the limits of
the binary search.

6. Once the desired value of τ has been computed, a finite

element analysis is carried out on τΩ (where elements
that lie outside are not included in the FEA) and, the TS
field is recomputed.

7. If the τ value has converged (to within user defined
accuracy) we return to Step-3. If the parameter has not
yet converged, we return to Step 5, after performing the
check below to ensure that the optimization process is
not diverging.

8. If a very large step size v∆ is specified by the user, the

above process may diverge. If this is detected (by

diverging values of compliance), the value of v∆ is

reduced by a factor of 2, prior to returning to Step 5.

4. NUMERICAL EXPERIMENTS

 In this Section, we present results from numerical
experiments based on the above algorithm. The default
parameters are as follows:

• As described earlier, the domain D can be of arbitrary
shape and size, and is discretized via tri-linear
hex/brick elements; the elements conform to the
boundary of D (unless otherwise noted).

• The material properties are 1E = and 0.3ν =

• The residual for the preconditioned conjugate gradient
is set to 1e-8, unless otherwise noted.

• The volume step-size (Step-1 of see Figure 9) was set to
0.05, unless otherwise noted.

• In Step-7 of the algorithm (see Figure 9), the fixed-
point iteration is assumed to have converged if the
change in compliance is less than 1%.

All experiments were conducted on a Windows 7 64-bit
machine with the following hardware:

• Intel I7 960 CPU quad-core running at 3.2GHz with 6
GB of memory; parallelization of CPU code was
implemented through OpenMP commands.

• The graphics programmable unit (GPU) is an Nvidia
GeForce GTX 480 (480 cores) with 1.5 GB.

• Both the CPU and GPU were configured to run in
double-precision.

4.1 Point-Load Cantilever: CG Iterations

 The first experiment involves the classic cantilever beam
illustrated in Figure 10, where one end of the beam is fixed,
while a tip load is applied at the other end. A typical hex-
mesh consisting of 32x16x16 elements is shown in Figure
10, i.e., with 28611 degrees of freedom (DOF).

Figure 10: The cantilevered beam problem and hex-mesh.

The optimal topology for a volume fraction of 0.5 was
computed with a step-size of 0.05 using the CPU and GPU
(two independent runs); Figure 11 illustrates the optimal
topology, with a compliance of 4.88 units; identical results
were obtained from CPU and GPU.

 On the CPU, the optimal topology was computed in 9.04
seconds. On the GPU, the computational time was reduced
to 6.04 seconds, i.e., overall speed-up was approximately
1.5. Both implementations are otherwise identical, requiring
30 finite element iterations, in total.

Figure 11: Optimal topology for a volume fraction of 0.5

(side and rear views).
 In the PareTO method, recall that an element is either ‘in’
or ‘out’, i.e., there is no concept of density. However, we
artificially forced the relative-density of ‘out’ elements to

0.005, i.e., 7

0
1.25E e E

−= and studied the convergence.

 Figure 12 illustrates the impact of this change on the CG
iterations across the 30 finite element runs. A pure ‘in/out’
approach requires an almost constant number of iterations,
i.e., CG is relatively insensitive to the absence of material.
On the other hand, with a non-zero density, the number of
CG iterations increases as elements are removed from the
design space. This can be observed in Figure 12. One can
also observe the oscillation in the number of iterations. This
is consistent with the algorithm in Figure 9 since the
solution is recycled in Steps 5 through Step 8, and therefore
fewer CG iterations are needed. This experiment highlights
one the primary advantages of the PareTO method.

Figure 12: Impact of density on CG iterations.

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

4.2 Point-Load Cantilever: Verification

 The dimensions of the above cantilevered beam problem
were modified as shown in Figure 13; this corresponds to
the problem considered in [9]. The mesh now consists of
128x80x24 elements, i.e., 783,675 DOF.

Figure 13: The cantilevered beam problem and hex-mesh

with 783K DOF.
Figure 14 illustrates the computed and published topologies
[9] for a volume fraction of 0.5. While the overall shape is
similar, the detailed topologies are different. This is not
surprising since: (1) it is well known that topology
optimization does not yield unique solutions, and (2) the
algorithms are fundamentally different, and (3) so are the
convergence criteria, iso-surface extraction, etc.

 The time reported in [9] for solving this problem, by
exploiting symmetry, is 3.9 hours. In the present work, with
a volume step-size of 0.05, the computational times are as
follows: 16 minutes (CPU) and 125 seconds (GPU); we did
not exploit symmetry.

Figure 14: (a) Computed topology, (b) computed by [9].

The initial compliance computed in the present work is 1
unit, and the final compliance is 1.47 units; the compliance
was not reported in [9]. The compliance versus volume
fraction for the present work is illustrated in Figure 15. Note
that typically 3 finite element iterations are required to
move from one volume step to the next. For this problem, a
total of 29 finite elements operations are required.

Figure 15: Compliance versus volume fraction pareto-curve.

4.3 Edge-Load Cantilever: Verification

 The next experiment involves the domain illustrated in
Figure 16, consisting of 84x28x14 elements, i.e., 110925
DOF; this problem was considered in [11].

Figure 16: Edge-loaded cantilevered beam and hex-mesh

with 110925 DOF.
Figure 17 illustrates the topology computed here for a
volume fraction of 0.5. The final topology was computed
after 26 finite element operations, in 200 seconds on the
CPU, and 44.8 seconds, on the GPU. The ratio of final to
initial compliance is 1.37. The computational time reported
in [11] is 2.4 hours.

Figure 17: Optimal topology for the problem in Figure 10,
obtained in 200 seconds (CPU) and 44.8 seconds (GPU).
4.4 Bridge Design: Pareto Topologies

 We now consider the bridge problem illustrated in Figure
18, where a uniform load is applied on a horizontal layer,
and the design space is supported at four symmetric points
at a distance of 8 units from the two ends. A hex-mesh with
approximately 113,000 dof is also shown in Figure 18.

(a) Bridge dimensions.

(b) Hex mesh with 113,000 dof.

Figure 18: The bridge problem.
Figure 19 illustrates the optimal bridge for a volume fraction
of 0.35. The final topology was computed after 32 finite
element operations, in 120 seconds on the CPU, and 36.2
seconds, on the GPU. For visual comparison, Figure 17 also
illustrates the Oregon City Bridge spanning the Willamette

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

River; the similarities are striking. Such observations have
been made by other authors as well [16].

(a) Optimal bridge for volume fraction of 0.35

(b) Oregon city bridge.

Figure 19: Simulated and real bridge designs.
 Recall that the PareTO method computes all optimal
topologies up to a desired volume fraction, at no additional
cost. Figure 20 illustrates the computed bridge for a volume
fraction of 0.40.

Figure 20: Optimal bridge for a volume fraction of 0.40

4.5 Knuckle Design: Non-uniform Hex-mesh

 To illustrate the generality of the implementation, we
consider optimizing the topology of a ‘knuckle’ illustrated in
Figure 21a. Unlike the previous examples, the hex-mesh is
irregular and consists of 20160 degrees of freedom; the
mesh was created using Abaqus, a commercial FEA system.
Figure 21b illustrates the optimal topology for a volume
fraction of 0.55. The total computational times are 109
seconds (CPU) and 42 seconds (GPU).

Figure 21: (a) A knuckle problem and (b) optimal topology

4.6 Stool Design: Insensitivity to Mesh-Size

 Next we study the impact of discretization on the final
topology. As a specific example, we consider the ‘stool
design’ problem illustrated in Figure 22 where the vertical
displacement of the four corners is restrained, and a vertical
force is applied at the center as shown. In addition, to
eliminate singularity, the horizontal displacements of the
one of the corners are also restrained. This problem was
also solved by the authors in [9].

Figure 22: Stool design problem.

The domain was discretized into NxNxN elements where N
was varied. Figure 23 illustrates the optimal designs for a
volume fraction of 0.2, with a step-size of 0.10, for four
different values of N. The GPU computing time, and final-
to-initial compliance ratio for each case is also listed.

(a) N=16; t=5.8s;J/J0=1.85 (b) N=32; t=19s; J/J0=1.43

(c) N=64; t=185s; J/J0=1.39 (d) N=96; t=850s; J/J0=1.39

Figure 23: Optimal stool-designs
Besides a refinement in topology and detail, the algorithm
leads to similar designs. The speed-up offered by the GPU
over the CPU varied from 1.5 for N =16, to 6, for N = 96.

4.7 Table Design: Insensitivity to Step-Size

 In the PareTO algorithm of Figure 9 we start with an
initial step-size of 0.05. Here, we highlight the adaptive
nature of the algorithm if a different step-size is prescribed.
In other words, suppose the user specifies a step-size of 0.25
in order to accelerate computation, the algorithm may fail to
converge in the first attempt. This is automatically detected,
and the algorithm makes a second attempt with a step-size
of 0.125 and so on.

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

 As a specific example, consider the ‘table design’ problem
illustrated in Figure 24 where the four corners are
restrained, and a vertical pressure is applied on the top-face.

Figure 24: Table design problem.

The domain is discretized into 8*80*80 elements. Figure 25
illustrates the optimal topologies for a volume fraction of
0.2, with two different initial step-sizes. Observe that, the
computational time is larger with a larger initial step-size
since numerous FEA are ‘wasted’ initially. However, in both
cases, the final topologies are almost identical with a
compliance difference of less than 1%.

(a)

0 0.50ν∆ = ; t=93 secs; J = 5.82.

(b)

0 0.05ν∆ = ; t=71 secs; J = 5.76.

Figure 25: Optimal table-designs for volume fraction of 0.2
Since the computational cost can prohibit extremely small
steps, we recommend an initial step size of 0.05. If the
method fails to converge for this step-size, a smaller step
will be taken in an adaptive fashion. Further theoretical
investigation is required to understand the impact of step-
size on the final topology and objective function.

4.8 Case Study: Airline Passenger Seat Frame

 Next consider the design of an airline passenger seat
frame illustrated schematically in Figure 26 [47]. While air-
frames must meet numerous objectives: low mass, high
stiffness, crash-worthiness, low-cost, etc., we focus here on
weight and compliance minimization.

Figure 26: A schematic of a passenger airline frame.

The initial geometry is illustrated in Figure 27a (all linear
units in mm); the material is chosen to be 1060 aluminum

(69 ; 0.33E GPa υ= =). The applied boundary conditions

are illustrated in Figure 27b where it is assumed that the
load on the horizontal plane to back-support is in the ratio
4:1. The front edge is fixed, while the back edge is fixed in
the vertical direction.

Figure 27: (a) The initial design space and (b) Boundary

conditions for a seat-frame.

The geometry was discretized using a non-conforming
uniform grid, resulting in 56,000 elements and 63,000
nodes, i.e., 189,000 degrees of freedom.

 Designs for various volume fractions were obtained; two
of which are illustrated in Figure 28 for volume fraction of
0.3 and 0.20. Observe that the 0.30 design is closed at the
back, and does not provide access to the space underneath
and therefore undesirable. Other manufacturing and
ergonomic constraints must be included to improve the
final design.

Figure 28: Optimal seat frames for fractions of 0.3 and 0.2.

4.9 Summary of Computational Times

 In Table 1, we summarize results for some of the large-
scale examples, and compare them against published data,
wherever available. The PareTO columns include: (i) the
total number of FEA iterations taken to reach the final
volume fraction, (ii) the ratio of final to initial compliance,
(iii) the CPU time and (iv) the GPU time.

 Both the CPU and GPU implementations are restricted by
available memory. In the GPU, with 1.5 GB of memory, the
tip-cantilever problem, with 15 million degrees of freedom,
was solved in 2 hours. In the CPU, with 6 GB of memory,
the same problem, but with 92 million degrees of freedom
was solved in approximately 12 days (as summarized
below).

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

Table 1: Summary of computing times and compliances.
Name of
part &
volume
fraction

DOF Pub.
Data

PareTO

#FEA

0

J

J

CPU GPU

Cantilever
Beam;
Edge
(0.50)

110K 2.4 hr,
#FEA:
139 [11]

26 1.37 200
secs

45
secs

Knuckle
(0.55)

20K -- 24 1.23 111
secs

44
secs

Bridge
(0.35)

113K -- 32 1.45 2
mins

36.2
secs

Stool;
N=96
(0.20)

2.7M 21.8 hr;
#FEA:
703
[9];

23 1.43 1 hr,
24
mins

14
mins

Point
Load
Cantilever
(0.50)

783K 3.9 hr,
#FEA:
470
[9];

29 1.47 16
mins

125 s

15M - 22 1.53 19hr,
28
mins

2hr,
12

mins

92M - 23 1.52 12
days,
2hr

-

5. CONCLUSIONS

 The main contribution of the paper is an efficient, and yet
simple algorithm for large scale 3-D topology optimization.
As illustrated via numerical examples, the proposed
algorithm and implementation is 1~2 orders of magnitude
faster than previously published literature. Readers may
download PareTO from www.ersl.wisc.edu.

 The work presented here has largely focused on
compliance minimization. However, as demonstrated, the
PareTO method is applicable for other problems as well
[43]. It remains to be seen if this can be successfully
extended to other classes of problems. Further, we have not
attempted here to demonstrate either the parallel or
numerical scalability of the method [12], and we have used a
simple Jacobi preconditioned conjugate gradient; we hope
to address these limitations in the future. Indeed, if the
acceleration techniques reviewed earlier in the paper can be
incorporated, the method can perhaps be further improved.

 Nonlinear problems in topology optimization have
received significant attention lately [48]. Extending PareTO
to such nonlinear problems is a promising avenue since the
topological sensitivity concept has been generalized to
nonlinear problems as well [49].

6. REFERENCES

[1] M. P. Bendsøe and N. Kikuchi, “Generating optimal
topologies in structural design using a
homogenization method,” Computer Methods in
Applied Mechanics and Engineering, vol. 71, pp. 197–
224, 1988.

[2] O. Sigmund, “A 99 line topology optimization code
written in Matlab,” Structural and Multidisciplinary
Optimization, vol. 21, no. 2, pp. 120–127, 2001.

[3] G. Allaire, “A level-set method for shape
optimization,” Comptes Rendus Mathematique, vol.
334, no. 12, pp. 1125–1130, 2002.

[4] G. Allaire and F. Jouve, “A level-set method for
vibration and multiple loads structural optimization,”
Structural and Design Optimization, vol. 194, no.
30–33, pp. 3269–3290, 2005.

[5] L. He, “Incorporating topological derivatives into
shape derivatives based level set methods,” Journal
of Computational Physics, vol. 225, no. 1, pp. 891–
909, 2007.

[6] M. Y. Wang, “A level set method for structural
topology optimization,” Computer Methods in
Applied Mechanics and Engineering, vol. 192, pp.
227–246, 2003.

[7] G. Rozvany, “A critical review of established methods
of structural topology optimization,” Structural and
Multidisciplinary Optimization, vol. 37, no. 3, pp.
217–237, 2009.

[8] M. P. Bendsoe and O. Sigmund, Topology
Optimization: Theory, Methods and Application, 2nd
ed. Springer, 2003.

[9] T. Borrvall and J. Petersson, “Large-scale topology
optimization in 3-D using parallel computing,”
Computer Methods in Applied Mechanics and
Engineering, vol. 190, pp. 6201–6229, 2001.

[10] Y. I. Kim and B. M. Kwak, “Design space
optimization using a numerical design continuation
method,” International Journal for Numerical
Methods in Engineering, vol. 53, no. 1979–2002,
2002.

[11] S. Wang, E. D. Sturler, and G. Paulino, “Large-scale
topology optimization using preconditioned Krylov
subspace methods with recycling,” International
Journal for Numerical Methods in Engineering, vol.
69, no. 12, pp. 2441–2468, 2007.

[12] A. Evgrafov, C. J. Rupp, K. Maute, and M. L. Dunn,
“Large-scale parallel topology optimization using a
dual-primal substructuring solver,” Structural and
Multidisciplinary Optimization, vol. 36, pp. 329–
345, 2008.

[13] O. Amir, M. Bendsøe, and O. Sigmund, “Approximate
reanalysis in topology optimization,” International
Journal for Numerical Methods in Engineering, vol.
78, pp. 1474–1491, 2009.

[14] U. Kirsch, “Combined Approximations - A General
Reanalysis Approach for Structural Optimization,”
Structural and Multidisciplinary Optimization, vol.
20, no. 2, pp. 97–106, 2000.

[15] S. Schmidt, “A 2589 Line Topology Optimization
Code Written for the Graphics Card,” Univeritat
Trier; www.am.uni-erlangen.de, Technical report
Preprint SPP1253-068, 2009.

[16] T. Nguyen, G. Paulino, J. Song, and C. Le, “A
computational paradigm for multiresolution topology
optimization (MTOP),” in Structural and
Multidisciplinary Optimization, vol. 41, 2010, pp.
525–539.

[17] O. Amir, M. Stolpe, and O. Sigmund, “Efficient use of
iterative solvers in nested topology optimization,”
Structural and Multidisciplinary Optimization, vol.
42, no. 1, pp. 55–72, 2010.

[18] O. Amir and O. Sigmund, “On reducing
computational effort in topology optimization: how

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

far can we go?,” Structural and Multidisciplinary
Optimization, vol. 44, no. 1, pp. 25–29, 2011.

[19] C. Talischi, G. Paulino, A. Pereira, and F. M.
Menezes, “Polygonal finite elements for topology
optimization: A unifying paradigm,” International
Journal for Numerical Methods in Engineering, vol.
82, no. 6, pp. 671–698, 2010.

[20] C. Talischi, G. Paulino, A. Pereira, and F. M.
Menezes, “PolyTop: a Matlab implementation of a
general topology optimization framework using
unstructured polygonal finite element meshes.,”
Structural and Multidisciplinary Optimization, vol.
Published Online. DOI: 10.1007/s00158–011–0696-
x, 2012.

[21] B. Hassani, M. Khanzadi, and S. M. Tavakkoli, “An
isogeometrical approach to structural topology
optimization by optimality criteria,” Structural and
Multidisciplinary Optimization, vol. 45, no. 2, pp.
223–233, 2012.

[22] S. R. M. Almeida, G. Paulino, and E. C. N. Silva, “A
Simple and Effective Inverse Projection Scheme for
Void Distribution Control in Topology Optimization,”
Structural and Multidisciplinary Optimization, vol.
39, no. 4, pp. 359–371, 2009.

[23] L. L. Stromberg, A. Beghini, W. F. Baker, and G.
Paulino, “Topology Optimization for Braced Frames:
Combining Continuum and Discrete Elements,”
Engineering Structures, vol. 37, pp. 106–124, 2012.

[24] K. Suresh, “A 199-line Matlab code for Pareto-
optimal tracing in topology optimization,” Structural
and Multidisciplinary Optimization, vol. 42, no. 5,
pp. 665–679, 2010.

[25] I. Turevsky and K. Suresh, “Efficient Generation of
Pareto-Optimal Topologies for Compliance**,”
International Journal for Numerical Methods in
Engineering, vol. 87, no. 12, pp. 1207–1228, 2011.

[26] O. C. Zienkiewicz, The Finite Element Method for
Solid and Structural Mechanics. Elsevier, 2005.

[27] C. E. Augarde, A. Ramage, and J. Staudacher, “An
element-based displacement preconditioner for linear
elasticity problems,” Computers and Structures, vol.
84, no. 31–32, pp. 2306–2315, 2006.

[28] D. Goddeke, R. Strzodka, and S. Turek, “Performance
and accuracy of hardware-oriented native-emulated-
and mixed-precision solvers in FEM simulations,”
International Journal of Parallel , Emergent and
Distributed Systems, vol. 22, no. 4, pp. 221–256,
2007.

[29] A. Borisov, M. Dickinson, and S. Hastings, “A
Congruence Problem for Polyhedra,” The American
Mathematical Monthly, vol. 117, no. 3, pp. 232–249,
2010.

[30] W. H. Press and et. al., Numerical Recipies: The Art
of Scientific Computing, 3rd ed. Cambridge
University Press, 2007.

[31] Y. Saad, Iterative Methods for Sparse Linear
Systems. SIAM, 2003.

[32] H. A. Eschenauer, “Bubble method for topology and
shape optimization of structures,” Structural
Optimization, vol. 8, pp. 42–51, 1994.

[33] A. A. Novotny, “Topological Derivative for Linear
Elastic Plate Bending Problems,” Control and
Cybernetics, vol. 34, no. 1, pp. 339–361, 2005.

[34] A. A. Novotny, “Topological Sensitivity Analysis for
Three-dimensional Linear Elasticity Problem,”

Computer Methods in Applied Mechanics and
Engineering, vol. 196, no. 41–44, pp. 4354–4364,
2005.

[35] A. A. Novotny, “Topological-Shape Sensitivity
Method: Theory and Applications,” Solid Mechanics
and its Applications, vol. 137, pp. 469–478, 2006.

[36] J. Sokolowski, “On Topological Derivative in Shape
Optimization,” SIAM journal on control and
optimization, vol. 37, no. 4, pp. 1251–1272, 1999.

[37] J. Céa, S. Garreau, P. Guillaume, and M. Masmoudi,
“The shape and topological optimization connection,”
Computer Methods in Applied Mechanics and
Engineering, vol. 188, no. 4, pp. 713–726, 2000.

[38] I. Turevsky, S. H. Gopalakrishnan, and K. Suresh,
“An Efficient Numerical Method for Computing the
Topological Sensitivity of Arbitrary Shaped Features
in Plate Bending**,” International Journal of
Numerical Methods in Engineering, vol. 79, pp.
1683–1702, 2009.

[39] I. Turevsky and K. Suresh, “Generalization of
Topological Sensitivity and its Application to
Defeaturing**,” in ASME IDETC Conference, Las
Vegas, 2007.

[40] S. H. Gopalakrishnan and K. Suresh, “Feature
Sensitivity: A Generalization of Topological
Sensitivity**,” Finite Elements in Analysis and
Design, vol. 44, no. 11, pp. 696–704, 2008.

[41] R. A. Feijóo, “The topological-shape sensitivity
method in two-dimensional linear elasticity topology
design,” in Applications of Computational Mechanics
in Structures and Fluids, V. S. S.R. Idelsohn, Ed.
CIMNE, 2005.

[42] G. Allaire, “A level-set method for vibration and
multiple loads structural optimization,” Computer
Methods in Applied Mechanics and Engineering, vol.
194, no. 3269–3290, 2005.

[43] I. Turevsky and K. Suresh, “Tracing the Envelope of
the Objective-Space in Multi-Objective Topology
Optimization**,” presented at the ASME IDETC/CIE
Conference, Washington, DC, 2011.

[44] G. Allaire, “Structural Optimization using Sensitivity
Analysis and a Level-set Method,” Journal of
Computational Physics, vol. 194, no. 1, pp. 363–393,
2004.

[45] J. A. Norato, “A topological derivative method for
topology optimization,” Structural and
Multidisciplinary Optimization, vol. 33, pp. 375–386,
2007.

[46] W. E. Lorensen and H. E. Cline, “Marching Cubes: a
high resolution 3D surface reconstruction
algorithm.,” Computer Graphics (Proc. of
SIGGRAPH), vol. 21, no. 4, pp. 163–169, 1987.

[47] B. F. Monroe, “Aircraft seat structure,” U.S. Patent
30378121962.

[48] G. H. Yoon, “Maximizing the fundamental
eigenfrequency of geometrically nonlinear structures
by topology optimization based on element
connectivity parameterization,” Computers &
Structures, vol. 88, no. 1–2, pp. 120–133, 2010.

[49] T. E. Bruns and D. A. Tortorelli, “Topology
optimization of non-linear elastic structures and
compliant mechanisms,” Computer Methods in
Applied Mechanics and Engineering, vol. 190, no.
26–27, pp. 3443–3459, 2001.

Structural and Multidisciplinary Optimization: Vol. 47, pp. 49-61, 2013

