

Assembly-Free Large-Scale Modal Analysis on the GPU
Praveen Yadav, Krishnan Suresh

suresh@engr.wisc.edu

Department of Mechanical Engineering,

UW-Madison, Madison, Wisconsin 53706, USA

Abstract

Popular eigen-solvers such as block-Lanczos require repeated inversion of an eigen-matrix. This is a bottleneck in
large-scale modal problems with millions of degrees of freedom. On the other hand, the classic Rayleigh-Ritz
conjugate gradient method only requires a matrix-vector multiplication, and is therefore potentially scalable to
such problems. However, as is well-known, the Rayleigh-Ritz has serious numerical deficiencies, and has largely
been abandoned by the finite element community.

In this paper, we address these deficiencies through subspace augmentation, and consider a subspace augmented
Rayleigh-Ritz conjugate gradient method (SaRCG). SaRCG is numerically stable and does not entail explicit
inversion. As a specific application, we consider the modal analysis of geometrically complex structures
discretized via non-conforming voxels. The resulting large-scale eigen-problems are then solved via SaRCG. The
voxelization structure is also exploited to render the underlying matrix-vector multiplication assembly-free. The
implementation of SaRCG on multi-core CPUs, and graphics-programmable-units (GPUs) is discussed, followed
by numerical experiments and case-studies.

1. INTRODUCTION

Consider the modal analysis of a thin geometrically
complex structure illustrated in Figure 1. The first
step in such an analysis is the construction of a
suitable finite-element mesh.

Figure 1: A thin gear-housing whose eigen-spectrum is

desired.
Thin geometrically complex structures require a small
element size … resulting in a large scale finite-element
problem. For example, for the above structures, after
numerous failed attempts, we were able to create the
tetrahedral mesh illustrated in Figure 2, with over
750,000 degrees of freedom.

Figure 2: Complex thin-structures require a fine-

mesh.
This leads to the eigen-problem:

 Kx Mxλ= (1.1)

where &K M are the stiffness and mass matrices
associated with the finite-element discretization. The
above problem has been well-studied, and numerous
implementations exist [1–3]. When &K M are large,
practical limitations arise. Specifically, popular eigen-
solvers such as block-Lanczos require explicit and
repeated inversion of a large-size eigen-matrix (see
Section 2), and the memory requirements and
computational time grows quadratically in such
methods.

On the other hand, the classic Rayleigh-Ritz conjugate
gradient method for solving Equation (1.1) only
requires an implementation of sparse matrix-vector
multiplication. The memory requirements are low,
and the computational complexity depends largely on
the efficiency of the matrix-vector multiplication.
However, as numerical experiments indicate, the
Rayleigh-Ritz method lacks robustness, and can
exhibit poor convergence; consequently, it has largely
been abandoned by the finite element community.

In this paper, we revisit this method, and address the
limitations through subspace augmentation. The
resulting subspace augmented Rayleigh-Ritz
conjugate gradient (SaRCG) method is highly robust,
exhibits fast convergence, and is easily parallelizable.
An assembly-free implementation of SaRCG on multi-
core and GPU architectures is discussed.

2. LITERATURE REVIEW

In this Section, we briefly review popular strategies
for solving the generalized eigen-value problem:

 Kx Mxλ= (2.1)

For the remainder of the paper, we assume that K
and M are sparse, symmetric, real, and positive
definite.

One of the most popular methods today to solve
Equation (2.1) is the block-form of the shift-and-
invert Lanczos algorithm, also referred as the block-
Lanczos method [2], [4], [5]. The block-Lanczos
method requires repeated ‘inversion’ of an eigen-
matrix K Mσ− , where the parameter σ is
determined during iterations of the method.

Since K and M are large, and the parameter σ
varies during the iteration, explicit LU factorization of
K Mσ− is not desirable. An alternate strategy is to
factorize this matrix through preconditioned iterative
solvers. However, as emphasized in [2], [6], early
termination of iterative solvers can lead to a
significant loss of accuracy in block-Lanczos,
requiring careful attention to termination.

In [6], the classic block-Lanczos algorithm was
instead modified to eliminate the need for an explicit
decomposition. Specifically, the ‘inversion’ was
carried out in an approximate sense over a Krylov
sub-space. The method discussed in this paper
borrows this concept, but in a different context.

In [2], the authors rely on Algebraic Multigrid as a
pre-conditioner for factorizing the shifted matrix. In
addition, the authors also implement and compare a
variety of alternate algorithms including ‘locally
optimal block preconditioned conjugate gradient’,
‘Davidson-Jacobi’, etc. More importantly, the authors
demonstrate that, for large-scale eigen-value
problems, such alternate algorithms can be
competitive. This is a key motivation for the present
paper.

One such alternate algorithm is the Rayleigh-Ritz
conjugate gradient (RCG) where the eigen-mode
problem is posed and solved as a minimization
problem (see next Section). Since the RCG method
can be slow to converge, the authors in [7] implement
a parallel version of RCG with factorized sparse
approximate inverse as a pre-conditioner. Further, in
[8], a locally-optimal variation of RCG was proposed.
The essential idea is to expand the search-space
during each step of CG in a locally-optimal sense. We

do not implement this variation here, but the
proposed method can be modified to include local-
optimality.

Besides block-Lanczos and RCG, there are dozens of
methods including Jacobi-Davidson [9] and inverse-
iteration [10] that do not offer significant advantages
over RCG or block-Lanczos, and are therefore not
pursued here.

3. Rayleigh-Ritz Conjugate Gradient

As stated earlier, the Rayleigh-Ritz conjugate gradient
(RCG) algorithm [11], [12] only requires an efficient
implementation of sparse matrix-vector
multiplication. It therefore exhibits numerous
advantages including simplicity, low memory
requirements, and significant scope for parallelism.

3.1 Rayleigh Quotient Concept

A key concept behind RCG is the Rayleigh quotient of
an arbitrary vector x :

 ()
T

T

x Kx
x

x Mx
ϕ = (3.1)

If the vector x happens to be an eigen-vector of
(,)K M , then the Rayleigh quotient is the
corresponding eigen-value. Thus, by minimizing the
Rayleigh quotient, one can compute the lowest eigen-
pair, i.e., the eigen-value problem can be posed as a
minimization problem:

T

Tx

x Kx
Min

x Mx
 (3.2)

3.2 Computing the Lowest Mode

Thus, one can deploy, for example, the nonlinear
conjugate gradient method [13] to find the lowest
eigen-mode. Towards this end, observe that the
gradient of Equation (3.2) is given by:

2

()
() 2

M

Kx x Mx
g x

x

ϕ
  −  =     

 (3.3)

where:

 T

M
x x Mx= (3.4)

Exploiting the classic conjugate gradient algorithm
[13], we have the Rayleigh-Ritz conjugate gradient
(RCG; Version 1):

Rayleigh-Ritz Conjugate Gradient (Version 1):

1. Initialize
(1) 0x ≠ such that (1) 1

M
x =

2. Set (0) 0p = , (1) 1β = and 1k =

3. Compute ()()kxϕ via Equation (3.1), and the

gradient ()kg via Equation (3.3)

4. The conjugate search direction is given by:

() () () (1)k k k kp g pβ −= − +

5. Find the step length
()kδ as described in [14]

6. Let (1) () () ()k k k ky x pδ+ = + and

(1) (1) (1)/k k k

M
x y y+ + +=

7. If ()kg ε≤ , terminate; else, increment k , and

go to step 3

Observe that the RCG algorithm only requires matrix-
vector multiplications: Kv and Mv , making it a
simple algorithm to implement.

3.3 Computing Multiple Modes

To compute higher modes, observe that that if
1 1
(,)xλ

and
2 2
(,)xλ are two distinct modes, and if

1 2
λ λ≠ ,

then they must satisfy M-orthogonality:

1 2

0Tx Mx = (3.5)

Further, if
1 2
λ λ= , one can always find a pair of

eigen-modes that satisfy the above equation. Thus, to
find the second eigen-mode, we pose a constrained
minimization problem:

1
. . 0

T

Tx

T

x Kx
Min

x Mx

s t x Mx =

 (3.6)

Given an arbitrary vector x , one can enforce M-
orthogonality via:

 ()1 1

Tx x x Mx x= − (3.7)

To ensure M-orthogonality during the iteration
process, it is necessary and sufficient if: (1) the initial

random vector is M-orthogonal to
1
x , and (2) the

search directions ()kp are M-orthogonal to
1
x .

Thus, suppose the first (m-1)-modes have been
computed:

1 2 1
{ , ,..., }

m
X x x x −= (3.8)

To compute the next mode, one must solve the
constrained minimization problem:

. . 0

T

Tx

T

x Kx
Min

x Mx

s t x MX =

 (3.9)

where M-orthogonality is enforced via:

 ()
1

1

m
T

i i
i

x x x Mx x
−

=

= −∑ (3.10)

This leads to the following RCG algorithm (Version 2)

for computing the mth pair (,)
m m
xλ [11].

Rayleigh-Ritz Conjugate Gradient (Version 2):

1. Suppose m-1 eigen-modes
1 2 1
{ , ,..., }

m
X x x x −=

have been computed.

2. Initialize
(1) 0x ≠ such that (1) 1

M
x = and

1
0Tx MX =

3. Set (0) 0p = , (1) 1β = and 1k =

4. Compute ()()kxϕ via Equation (3.1), and the

gradient ()kg via Equation (3.3)

5. Let () () () (1)k k k kp g pβ −= − +� (preliminary direction)

6. Construct an M-orthogonal direction ()kp via

Equation (3.10)

7. Find the step length
()kδ as described in [14]

8. Let (1) () () ()k k k ky x pδ+ = + and

(1) (1) (1)/k k k

M
x y y+ + +=

9. If ()kg ε≤ , terminate; else, increment k , and

go to step 4.

3.4 Subspace Augmentation

There are three fundamental limitations of the above
RCG algorithm; these are confirmed later through
numerical experiments. To the best of our knowledge,
these limitations have not been identified/
emphasized in the literature:

1. Missing modes: As we sweep through the eigen-
spectrum, one or more eigen-modes may go
undetected, especially in the case of ‘near-by’ eigen-
values. This can be attributed to the fact that RCG
attempts to find local minima, and presence of
multiple minima that are close-by can be
detrimental to the algorithm.

2. Erroneous Results: A large value for ε (in step-
9 of RCG, version 2) can leads to erroneous results;

typically 10~ 10ε − is essential.

3. Slow convergence: On the other hand, 10~ 10ε −

leads to thousands of iterations (for each eigen-
mode), especially for ill-conditioned matrices.

Fortunately, all three problems can be addressed by
relying on subspace projection methods. Such
projection methods are fairly common in modern
eigen-solvers [3]. In particular, the method proposed

here is similar to the generic method of subspace
projection discussed in [2].

Specifically, let us assume that, at the end of k
iterations, we have a set of approximate eigen-vectors
()(1,2,...,)k

i
x i m=� computed via early termination of

RCG (say ~ 0.01ε). A sub-space is then defined via:

 () () () ()

1 2
{ , ,..., }k k k k

m
S x x x= � � � (3.11)

Next, a reduced stiffness and mass matrices are
constructed over this sub-subspace as follows:

() () ()

() () ()

k k T k

k k T k

K S KS

M S MS

=

=
 (3.12)

Observe that computing these matrices only requires
sparse matrix-vector multiplications. The two
matrices are then used to solve a smaller eigen-value
problem (exactly) via:

 () () () () ()k k k k kK V M V= Λ (3.13)

Finally, a sharpened set of eigen-vectors are recovered
via:

 (1) () ()k k kX S V+ = (3.14)

where:

 (1) (1) (1) (1)

1 2
{ , ,..., }k k k k

m
X x x x+ + + += (3.15)

One can now restart the RCG method with the eigen-
vectors in Equation (3.15) as the starting vectors. This
leads to the following subspace augmented Rayleigh-
Ritz conjugate gradient algorithm (SaRCG),
summarized below.

Subspace Augmented Rayleigh-Ritz Conjugate
Gradient (SaRCG):

1. Initialize (1) (1) (1) (1)

1 2
{ , ,..., }

m
X x x x= (typically

random vectors). Set 1k =

2. Compute ()k

i
x� with ()k

i
x as the starting vectors

until ()kg ε≤ (~ 0.01ε), for 1,2, ...,i m= , via

RCG (version 2).

3. Construct the reduced matrices via Equation

(3.12), where
()kS is defined in Equation (3.11),

and solve Equation (3.13) to find ()k
Λ and

()kV .

4. If convergence in
()kΛ has not been achieved,

construct the updated eigen-vectors
(1)kX +

 via

Equation (3.14), increment k and go to step 2.

This simple extension of the RCG algorithm
dramatically improves its robustness and
convergence. The additional computational cost of

constructing and solving the reduced eigen-value
problem is negligible. In other words, the primary
cost in SaRCG, is the sparse matrix-vector
multiplication (SpMV). Therefore, an efficient
implementation of SpMV is critical.

3.5 Voxelization

The proposed SaRCG method is applicable to any
finite-element discretization, including the
tetrahedral discretization of Figure 2. However, in this
paper, we consider a simple discretization, where the
geometry is approximated via uniform cubes or
‘voxels’; the voxel-approach has gained significant
popularity recently [15]. Since the voxelization need
not conform to the geometry, it is robust, fast and
relatively insensitive to the geometric complexity.
Further, unlike in stress analysis, where a conforming
mesh is essential, in eigen-mode analysis, a non-
conforming voxelization is often sufficient, especially
during the early stage of design. This is confirmed
through numerical experiments later in the paper.

The voxelization of the geometry in Figure 2 is
illustrated in Figure 3; it has over a million degrees of
freedom. Fortunately, even such a large-size problem
is easily handled via the proposed method.

Figure 3: Brute-force voxelization of the structure.
The voxelization of a triangulated CAD model, also
referred to as 3-D scan conversion, is straight-
forward, and is discussed, for example, see [16].
Voxels that are partially inside the geometry are
assigned a density value depending on the number of
corner nodes that lie inside the geometry. As the
numerical experiments indicate, the overall
computational cost for the voxelization is small
compared to the cost of computing the eigen-modes.

3.6 Shape Functions

Given a voxelization, one can choose a variety of
hexahedral finite element shape functions. The
simplest are tri-linear shape functions as described in
[17], where each node-based shape function is of the
form:

0.125(1)(1)(1); 1...8
i i i i
N iξ ξ η η ζ ζ= + + + = (3.16)

However, the resulting 8-noded elements are ‘stiff’,
and convergence is slow especially for higher order
modes, as illustrated through numerical experiments.
One could use 20-node or 27-node elements, but
these increase the memory requirements significantly.

In the context of static problems the authors of [18]
instead propose the use of three additional bubble-
functions of the form:

2

1

2

2

2

3

(, ,) (1)

(, ,) (1)

(, ,) (1)

ξ η ζ ξ

ξ η ζ η

ξ η ζ ζ

= −

= −

= −

M

M

M

 (3.17)

This resulting stiffness matrix will be form:

 11 12

21 22
e

K K
K

K K

 
 =  
  

 (3.18)

where

11

12

21

22

T

T

T

T

K N D Nd

K N D Md

K M D Nd

K M D Md

= ∇ ∇ Ω

= ∇ ∇ Ω

= ∇ ∇ Ω

= ∇ ∇ Ω

∫
∫
∫
∫

 (3.19)

Fortunately, one can condense out the bubble degrees
of freedom, resulting again in a reduced 24 degrees of
freedom element stiffness matrix [18]:

11 12 22 21

(\)
e
K K K K K= − (3.20)

While the authors in [18] demonstrate the merit of
this formulation for static problems, we have adopted
these bubble functions for eigen-problems. Numerical
experiments indicate bubble functions are highly
effective in eigen-problems as well.

3.7 Assembly-Free SpMV

The primary computational cost of sparse matrix-
vector multiplication (SpMV), in today’s
computational architecture, is memory-access, i.e.,
floating-point operations are essentially free [2]. In
SpMV, there are two types of memory access: (1)

accessing elements of ()k

i
x , and (2) accessing elements

of K and M .

There is very little one can do about the former,
except perhaps careful numbering of the mesh nodes.
However, the cost of accessing elements of K and M
can be dramatically reduced through assembly-free
methods as discussed below.

Since the geometry is discretized via uniform voxels,
all elements are geometrically identical. Therefore all
element matrices are identical (barring a ‘density’
assigned to partial voxels). Thus, one need not
assemble or store the global K and M matrices; it is

sufficient if a single matrix-pair
e
K and

e
M is stored.

Consequently, a matrix-free implementation ofKv ,
for example, may be implemented as follows [19]:

 ()e e e
e e

Kx K x K x
  = =   ∑ ∑ (3.21)

In other words, instead of assembling the K matrix,

and then carrying out Kx , we first multiply
e e
K x and

then assemble the result.

3.8 CPU and GPU Implementations

In the CPU implementation of the assembly-free
SpMV, parallelization was attained through OpenMP
commands (www.openmp.org).

In the GPU implementation using CUDA [20] on
NVidia cards, SpMV was implemented by assigning
each node of the voxel-grid to a scalar processor.
Associated with each voxel node, there are at most 8
voxel elements, and ‘27’ neighboring nodes. When a
block of threads are launched, all threads share
identical element matrices, and therefore a single
memory fetch of the stiffness and mass element
matrix per block is sufficient.

The three degrees of freedom associated with the 27
nodes are fetched in parallel. In general, during this
fetch, it is hard to enforce coalesced memory access
for arbitrary voxel-meshes. For more recent GPU
cards, we have observed that this is not a serious
issue. Finally, many of the low-level operations such
as vector-product were implemented using CUBLAS
library.

4. NUMERICAL EXPERIMENTS

In this Section, we present results from numerical
experiments based on the RCG and SaRCG
algorithms. All experiments were conducted on a
Windows-7 64-bit machine with the following
hardware:

• Intel I7 960 CPU quad-core running at 3.2GHz
with 6 GB of memory; parallelization of CPU code
was implemented through OpenMp commands.

• The graphics programmable unit (GPU) is an
NVidia GeForce GTX 480 (480 cores) with 1.5
GB.

• Both the CPU and GPU were configured to run in
double-precision.

4.1 Importance of Bubble Functions

In this experiment, we illustrate the value added by
the use of bubble functions discussed earlier.
Specifically, a short cantilevered beam of dimension 1
x 1 x 5, fixed on end is used in this experiment. In
Figure 4, the first 4 eigen-modes are illustrated; these
were computed using a quadratic tetrahedral mesh
with 45,000 DOF, in SolidWorks [21].

(1) 3221 Hz (2) 3221 Hz

(3) 14728 Hz (4) 17412 Hz

Figure 4: First four modes computed via SolidWorks.
Next using SaRCG, the first eigen-mode was
computed for different voxel sizes, with-and-without
bubble function. As one can observe, the use of bubble
functions dramatically improves the convergence at
no additional cost. Similar improvements were
observed for higher order modes, and for other case-
studies. Therefore, for the remainder of the
experiments, bubble functions are employed.

Table 1: First eigen-value of short cantilevered beam,
with-and-without bubble functions.

#DOF Without

Bubble

(Hz)

%error With

Bubble (Hz)

%error

1650 3278 1.8 3230 0.027

10000 3236 0.20 3224 0.009

31000 3228 0.05 3222 0.003

48000 3226 0.016 3221 0.000

4.2 Deficiency of RCG

Next, we illustrate the deficiency of RCG. Using the
same cantilevered beam example, we computed the
first four eigen-modes via RCG for different
tolerances values ε (see Version 2 of RCG algorithm)
for a fixed voxel size (55,000 DOF). As one can
observe in Table 2, even with tight tolerances, RCG
can miss some of the critical modes or compute them
out of order … the classic RCG method is not robust.

Table 2: First 4 eigen-value of beam via RCG.

 Mode-1 Mode-2 Mode-3 Mode-4

810ε −= 3260 17423 3566 25611

910ε −= 3223 3230 17455 25610

1010ε −= 3222 3222 17455 22846

1110ε −= 3222 3222 17455 14985

On the other hand, SaRCG converges to the correct
set of eigen-modes, even with a coarse tolerance of

410ε −= , as summarized in Table 3.

Table 3: First 4 eigen-values of beam via SaRCG.

 Mode-1 Mode-2 Mode-3 Mode-4

410ε −= 3221 3221 14851 17455

1110ε −= 3221 3221 14851 17455

4.2 Beam: Conforming vs. Non-Conforming

A premise of this paper is that, for approximate eigen-
mode analysis, a non-conforming mesh may be
sufficient. We illustrate this through the following
experiment. The beam from the previous example was
rotated about its longest axis by an arbitrary angle of
11 degrees, and the resulting geometry was discretized
via a non-conforming set of voxels (see Figure 5).
Then the first four eigen-modes were computed for
increasing density of the mesh, using SaRCG with

bubble-mesh, and a tolerance of 410ε −= .

Figure 5: Non-conforming voxelization of a beam.

Table 4 summarizes the results of this experiment.
Clearly, non-conforming meshes are never as accurate
as conforming meshes (for a fixed grid-size).
However, the inaccuracy can be reduced through
brute-force computation.

Table 4: First eigen-value for cylindrical beam
cantilever using SaCG with tolerance of 10-2.

#DOF GPU

Time

(sec)

Mode-

1

Mode-

2

Mode-3 Mode-4

55000 9.2 3201 3226 15138 17413

110000 19.2 3202 3224 14991 17427

200000 26.9 3215 3216 14892 17420

300000 44.9 3219 3223 14787 17435

4.3 Crank-Rod: A Practical Example

A more realistic example is that of a crank-rod
illustrated in Figure 6 that is clamped on the inner-
surface of the smaller cylindrical hole. The first eigen-
mode was computed using SolidWorks with default
mesh parameters. The resulting conforming (second-
order tetrahedral) mesh contains approximately
90,000 degrees of freedom. The first eigen-mode was
computed to be 529.6 Hz; the total computational
time including meshing and solver time was
approximately 9 seconds. Refinement of the mesh did
not change the first eigen-mode significantly in
SolidWorks.

Figure 6: First eigen-mode of a connecting-rod at

529.6 Hz
In Table 5, the computed eigen-value (via SaRCG) as
the mesh is refined is summarized. As one can
observe, the eigen-value converges to the ‘correct’
value, and the computational time, is comparable to
that of SolidWorks, especially when a GPU such as the
GTX 480 is used.

Table 5: First eigen-value for crank-rod.

DOF Mode-

1

Voxelization

time (CPU)

Solution

 time

(GPU)

Solution

 time

(CPU)

9,000 515 Hz 0.07 secs 1.6 secs 2.7 secs

25,000 560 Hz 0.12 secs 2.1 secs 3.7 secs

80,000 542 Hz 0.4 secs 4 secs 22 secs

136,000 538 Hz 0.6 secs 7 secs 58 secs

250,000 533 Hz 1.2 secs 16 secs 151 secs

4.4 Knuckle: Accuracy of First Few Eigen-
Modes

In the next example, we compare the accuracy of
SaRCG method for the first five eigen-modes for the
‘knuckle’ problem illustrated in Figure 6a, where the
two horizontal holes are clamped. Also illustrated in
Figure 6b and Figure 6c are the confirming and non-
conforming meshes respectively, with approximately
150,000 and 250,000 degrees of freedom,
respectively.

Figure 7: (a) A knuckle component, (b) conforming

mesh, and (c) voxel-mesh
The first five eigen-modes as computed using
SolidWorks, are illustrated in Figure 8; the total
computational time was approximately 15 seconds.

(1) 2341 Hz (2) 2484 Hz (3) 4221 Hz

(4) 5856 Hz (5) 7595 Hz

Figure 8: The first 5 modes computed via SolidWorks.
The corresponding five eigen-modes computed via the
proposed method are illustrated in Figure 9. The
eigen-values are within 1~2% accuracy, and the
computational time was approximately 35 seconds, on
the GPU, and 1.5 minutes on the CPU. For the next 20
modes, convergence to within 3~5% was also
observed.

(1) 2393 Hz (2) 2445 Hz (3) 4261 Hz

(4) 5724 Hz (5) 7534 Hz

Figure 9: The first 5 modes computed via proposed
method.

4.5 Gear Housing: Robustness

The primary advantages of the proposed method are
its robustness, simplicity and ability to handle
geometrically complex structures. To illustrate,
consider the gear housing illustrated earlier in Figure
1. The first eigen-mode of the structure computed via
the proposed method is illustrated in Figure 10.

Figure 10: The first mode of the structure in Figure 1.
The convergence of the first eigen-value with voxel-
size is summarized in Table 6; it demonstrates that
one can rapidly estimate the eigen-values in a fully
automated fashion. This is particularly important
during the early stages of design.

Table 6: First eigen-value for gear-housing.

DOF Mode-

1

Solution

 time

(GPU)

Solution

 time (CPU)

150,000 70 7.1 secs 62 secs

300,000 76 18 secs 2.1 mins

425,000 74.2 43 secs 3.7 mins

2,000,000 74.6 191 secs 23 mins

5. CONCLUSION

The main contribution of this paper is an assembly-
free implementation of Subspace augmented
Rayleigh-Ritz Conjugate Gradient (SaRCG), for
computing the eigen-modes of elastic structures. The
proposed method is simple, robust and ‘inverse-free’.
Since the method only requires an implementation of
a sparse matrix vector multiplication (SpMV), it is
highly parallelizable, and can be easily implemented
on modern multi-core architectures. Although the
method was demonstrated using a non-conforming
structured (voxel) mesh, it is equally applicable to
classic conforming meshes.

6. REFERENCES

[1] V. Hernandez, J. E. Roman, A. Tomas, and V.
Vidal, “A survey of software for sparse
eigenvalue problems.,” SLEPc Technical Report
STR-6. Universidad Politecnica de Valencia,
Valencia, Spain.
http://www.grycap.upv.es/slepc., 2009.

[2] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq,
and R. S. Tuminaro, “A Comparison of
Eigensolvers for Large-scale 3D Modal Analysis
using AMG-Preconditioned Iterative Methods,”
International Journal for Numerical Methods
in Engineering, vol. 64, no. 2, pp. 204–236,
2005.

[3] Y. Saad, Numerical methods for large
eigenvalue problems, 2nd ed. Manchester
University Press, 2011.

[4] R. G. Grimes, J. G. Lewis, and H. D. Simon, “A
Shifted Block Lanczos Algorithm for Solving
Sparse Symmetric Generalized Eigenproblems,”
SIAM Journal on Matrix Analysis and
Applications, vol. 15, no. 1, p. 228, 1994.

[5] D. C. Sorensen, “Numerical methods for large
eigenvalue problems,” ACTA NUMERICA, vol.
11, pp. 519–584, 2002.

[6] G. H. Golub and Q. Ye, “An Inverse Free
Preconditioned Krylov Subspace Method for
Symmetric Generalized Eigenvalue Problems,”
SIAM Journal on Scientific Computing, vol. 24,
no. 1, pp. 312–334, 2002.

[7] L. Bergamaschi, Á. Martínez, and G. Pini,
“Parallel preconditioned conjugate gradient
optimization of the Rayleigh quotient for the
solution of sparse eigenproblems,” Applied
mathematics and computation, vol. 175, no. 2,
p. 1964, 2006.

[8] A. V. Knyazev, “Toward the Optimal
Preconditioned Eigensolver: Locally Optimal
Block Preconditioned Conjugate Gradient
Method,” SIAM Journal on Scientific
Computing, vol. 23, no. 2, pp. 517–541, 2001.

[9] G. L. G. Sleijpen and H. A. Van der Vorst, “A
Jacobi-Davidson Iteration Method for Linear
Eigenvalue Problems,” SIAM Journal on
Matrix Analysis and Applications, vol. 17, no.
2, pp. 401–425, 1996.

[10] I. C. F. Ipsen, “Computing an Eigenvector with
Inverse Iteration,” SIAM REVIEW, vol. 39, no.
2, pp. 254–291, 1997.

[11] H.-J. Jang, “Preconditioned Conjugate
Gradient Method for Large Generalized
Eigenproblems,” Trends in Mathematics
Information Center for Mathematical Sciences,
vol. 4, no. 2, pp. 103–109, 2001.

[12] Y. T. Feng and D. R. J. Owen, “Conjugate
Gradient Methods for Solving the Smallest
Eigenpair of Large Symmetric Eigenvalue
Problems,” International Journal for
Numerical Methods in Engineering, vol. 39, no.
13, pp. 2209–2230, 1996.

[13] J., Wright, S. Nocedal, Numerical
optimization. New York: Springer Science +
Business Media, 2006.

[14] H. Yang, “Conjugate Gradient Methods for the
Rayleigh Quotient Minimization of Generalized
Eigenvalue Problems,” Computing -Wein-, vol.
51, no. 1, pp. 79–94, 1993.

[15] A. Duster, J. Parvizian, Z. Yang, and E. Rank,
“The Finite Cell Method for 3D problems of
solid mechanics.,” Computer Methods in
Applied Mechanics and Engineering, vol. 197,
pp. 3768–3782, 2008.

[16] E. A. Karabassi, G. Papaioannou, and T.
Theoharis, “A Fast Depth-Buffer-Based

Voxelization Algorithm,” Journal of Graphics
Tools, vol. 4, no. 4, 1999.

[17] O. C. Zienkiewicz, The Finite Element Method
for Solid and Structural Mechanics. Elsevier,
2005.

[18] H. H. Taiebat and J. P. Carter, “Three-
Dimensional Non-Conforming Elements,”
Centre for Geotechnical Research, The
University of Sydney, Sydney, R808, 2001.

[19] C. E. Augarde, A. Ramage, and J. Staudacher,
“An element-based displacement
preconditioner for linear elasticity problems,”
Computers and Structures, vol. 84, no. 31–32,
pp. 2306–2315, 2006.

[20] NVIDIA Corporation, NVIDIA CUDA:
Compute Unified Device Architecture,
Programming Guide. Santa Clara.: , 2008.

[21] SolidWorks, SolidWorks;
www.solidworks.com. 2005.

