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Abstract 

Popular eigen-solvers such as block-Lanczos require repeated inversion of an eigen-matrix. This is a bottleneck in 
large-scale modal problems with millions of degrees of freedom. On the other hand, the classic Rayleigh-Ritz 
conjugate gradient method only requires a matrix-vector multiplication, and is therefore potentially scalable to 
such problems. However, as is well-known, the Rayleigh-Ritz has serious numerical deficiencies, and has largely 
been abandoned by the finite element community.  

In this paper, we address these deficiencies through subspace augmentation, and consider a subspace augmented 
Rayleigh-Ritz conjugate gradient method (SaRCG). SaRCG is numerically stable and does not entail explicit 
inversion. As a specific application, we consider the modal analysis of geometrically complex structures 
discretized via non-conforming voxels. The resulting large-scale eigen-problems are then solved via SaRCG. The 
voxelization structure is also exploited to render the underlying matrix-vector multiplication assembly-free. The 
implementation of SaRCG on multi-core CPUs, and graphics-programmable-units (GPUs) is discussed, followed 
by numerical experiments and case-studies. 

1. INTRODUCTION 

Consider the modal analysis of a thin geometrically 
complex structure illustrated in Figure 1. The first 
step in such an analysis is the construction of a 
suitable finite-element mesh. 

 

 
Figure 1: A thin gear-housing whose eigen-spectrum is 

desired. 
Thin geometrically complex structures require a small 
element size … resulting in a large scale finite-element 
problem. For example, for the above structures, after 
numerous failed attempts, we were able to create the 
tetrahedral mesh illustrated in Figure 2, with over 
750,000 degrees of freedom. 

 
Figure 2: Complex thin-structures require a fine-

mesh. 
This leads to the eigen-problem: 

 Kx Mxλ=  (1.1) 

where &K M  are the stiffness and mass matrices 
associated with the finite-element discretization. The 
above problem has been well-studied, and numerous 
implementations exist [1–3]. When &K M  are large, 
practical limitations arise. Specifically, popular eigen-
solvers such as block-Lanczos require explicit and 
repeated inversion of a large-size eigen-matrix (see 
Section 2), and the memory requirements and 
computational time grows quadratically in such 
methods.  

On the other hand, the classic Rayleigh-Ritz conjugate 
gradient method for solving Equation (1.1) only 
requires an implementation of sparse matrix-vector 
multiplication. The memory requirements are low, 
and the computational complexity depends largely on 
the efficiency of the matrix-vector multiplication. 
However, as numerical experiments indicate, the 
Rayleigh-Ritz method lacks robustness, and can 
exhibit poor convergence; consequently, it has largely 
been abandoned by the finite element community.  



   

In this paper, we revisit this method, and address the 
limitations through subspace augmentation. The 
resulting subspace augmented Rayleigh-Ritz 
conjugate gradient (SaRCG) method is highly robust, 
exhibits fast convergence, and is easily parallelizable. 
An assembly-free implementation of SaRCG on multi-
core and GPU architectures is discussed.  

2. LITERATURE REVIEW  

In this Section, we briefly review popular strategies 
for solving the generalized eigen-value problem: 

 Kx Mxλ=  (2.1) 

For the remainder of the paper, we assume that K  
and M  are sparse, symmetric, real, and positive 
definite. 

One of the most popular methods today to solve 
Equation (2.1) is the block-form of the shift-and-
invert Lanczos algorithm, also referred as the block-
Lanczos method [2], [4], [5]. The block-Lanczos 
method requires repeated ‘inversion’ of an eigen-
matrix K Mσ− , where the parameter σ  is 
determined during iterations of the method. 

Since K  and M  are large, and the parameter σ  
varies during the iteration, explicit LU factorization of 
K Mσ− is not desirable. An alternate strategy is to 
factorize this matrix through preconditioned iterative 
solvers. However, as emphasized in [2], [6], early 
termination of iterative solvers can lead to a 
significant loss of accuracy in block-Lanczos, 
requiring careful attention to termination.  

In [6], the classic block-Lanczos algorithm was 
instead modified to eliminate the need for an explicit 
decomposition. Specifically, the ‘inversion’ was 
carried out in an approximate sense over a Krylov 
sub-space. The method discussed in this paper 
borrows this concept, but in a different context.  

In [2], the authors rely on Algebraic Multigrid as a 
pre-conditioner for factorizing the shifted matrix. In 
addition, the authors also implement and compare a 
variety of alternate algorithms including ‘locally 
optimal block preconditioned conjugate gradient’, 
‘Davidson-Jacobi’, etc. More importantly, the authors 
demonstrate that, for large-scale eigen-value 
problems, such alternate algorithms can be 
competitive. This is a key motivation for the present 
paper. 

One such alternate algorithm is the Rayleigh-Ritz 
conjugate gradient (RCG) where the eigen-mode 
problem is posed and solved as a minimization 
problem (see next Section). Since the RCG method 
can be slow to converge, the authors in [7] implement 
a parallel version of RCG with factorized sparse 
approximate inverse as a pre-conditioner. Further, in 
[8], a locally-optimal variation of RCG was proposed. 
The essential idea is to expand the search-space 
during each step of CG in a locally-optimal sense. We 

do not implement this variation here, but the 
proposed method can be modified to include local-
optimality.  

Besides block-Lanczos and RCG, there are dozens of 
methods including Jacobi-Davidson [9] and inverse-
iteration [10] that do not offer significant advantages 
over RCG or block-Lanczos, and are therefore not 
pursued here. 

3. Rayleigh-Ritz Conjugate Gradient 

As stated earlier, the Rayleigh-Ritz conjugate gradient 
(RCG) algorithm [11], [12] only requires an efficient 
implementation of sparse matrix-vector 
multiplication. It therefore exhibits numerous 
advantages including simplicity, low memory 
requirements, and significant scope for parallelism. 

3.1 Rayleigh Quotient Concept 

A key concept behind RCG is the Rayleigh quotient of 
an arbitrary vector x : 

 ( )
T

T

x Kx
x

x Mx
ϕ =  (3.1) 

If the vector x  happens to be an eigen-vector of 
( , )K M , then the Rayleigh quotient is the 
corresponding eigen-value. Thus, by minimizing the 
Rayleigh quotient, one can compute the lowest eigen-
pair, i.e., the eigen-value problem can be posed as a 
minimization problem: 
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x Mx
 (3.2) 

3.2 Computing the Lowest Mode 

Thus, one can deploy, for example, the nonlinear 
conjugate gradient method [13] to find the lowest 
eigen-mode. Towards this end, observe that the 
gradient of Equation (3.2) is given by: 
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 (3.3) 

where: 

 T

M
x x Mx=  (3.4) 

Exploiting the classic conjugate gradient algorithm 
[13], we have the Rayleigh-Ritz conjugate gradient 
(RCG; Version 1): 

Rayleigh-Ritz Conjugate Gradient (Version 1): 

1. Initialize 
(1) 0x ≠  such that (1) 1

M
x =  

2. Set (0) 0p = , (1) 1β =  and 1k =  

3. Compute ( )( )kxϕ  via Equation (3.1), and the 

gradient ( )kg  via Equation (3.3) 



   

4. The conjugate search direction is given by: 

( ) ( ) ( ) ( 1)k k k kp g pβ −= − +  

5. Find the step length 
( )kδ  as described in  [14] 

6. Let ( 1) ( ) ( ) ( )k k k ky x pδ+ = +  and 

( 1) ( 1) ( 1)/k k k

M
x y y+ + +=  

7. If ( )kg ε≤ , terminate; else, increment k , and 

go to step 3 

Observe that the RCG algorithm only requires matrix-
vector multiplications: Kv  and Mv , making it a 
simple algorithm to implement.  

3.3 Computing Multiple Modes 

To compute higher modes, observe that that if 
1 1
( , )xλ  

and 
2 2
( , )xλ  are two distinct modes, and if 

1 2
λ λ≠ , 

then they must satisfy M-orthogonality: 

 
1 2

0Tx Mx =  (3.5) 

Further, if 
1 2
λ λ= , one can always find a pair of 

eigen-modes that satisfy the above equation. Thus, to 
find the second eigen-mode, we pose a constrained 
minimization problem: 
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 (3.6) 

Given an arbitrary vector x , one can enforce M-
orthogonality via: 

 ( )1 1

Tx x x Mx x= −  (3.7) 

To ensure M-orthogonality during the iteration 
process, it is necessary and sufficient if: (1) the initial 

random vector is M-orthogonal to 
1
x , and (2) the 

search directions ( )kp  are M-orthogonal to 
1
x .  

Thus, suppose the first (m-1)-modes have been 
computed: 

 
1 2 1
{ , ,..., }

m
X x x x −=  (3.8) 

To compute the next mode, one must solve the 
constrained minimization problem: 
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s t x MX =

 (3.9) 

where M-orthogonality is enforced via: 

 ( )
1

1

m
T

i i
i

x x x Mx x
−

=

= −∑  (3.10) 

This leads to the following RCG algorithm (Version 2) 

for computing the mth pair ( , )
m m
xλ  [11]. 

Rayleigh-Ritz Conjugate Gradient (Version 2): 

1. Suppose m-1 eigen-modes 
1 2 1
{ , ,..., }

m
X x x x −=  

have been computed. 

2. Initialize 
(1) 0x ≠  such that (1) 1

M
x =  and 

1
0Tx MX =  

3. Set (0) 0p = , (1) 1β =  and 1k =  

4. Compute ( )( )kxϕ  via Equation (3.1), and the 

gradient ( )kg  via Equation (3.3) 

5. Let ( ) ( ) ( ) ( 1)k k k kp g pβ −= − +�  (preliminary direction) 

6. Construct an M-orthogonal direction ( )kp  via 

Equation (3.10) 

7. Find the step length 
( )kδ  as described in [14] 

8. Let ( 1) ( ) ( ) ( )k k k ky x pδ+ = +  and 

( 1) ( 1) ( 1)/k k k

M
x y y+ + +=  

9. If ( )kg ε≤ , terminate; else, increment k , and 

go to step 4. 

3.4 Subspace Augmentation 

There are three fundamental limitations of the above 
RCG algorithm; these are confirmed later through 
numerical experiments. To the best of our knowledge, 
these limitations have not been identified/ 
emphasized in the literature: 

1. Missing modes: As we sweep through the eigen-
spectrum, one or more eigen-modes may go 
undetected, especially in the case of ‘near-by’ eigen-
values. This can be attributed to the fact that RCG 
attempts to find local minima, and presence of 
multiple minima that are close-by can be 
detrimental to the algorithm. 

2. Erroneous Results:  A large value for ε  (in step-
9 of RCG, version 2) can leads to erroneous results; 

typically 10~ 10ε −  is essential. 

3. Slow convergence: On the other hand, 10~ 10ε −
 

leads to thousands of iterations (for each eigen-
mode), especially for ill-conditioned matrices. 

Fortunately, all three problems can be addressed by 
relying on subspace projection methods. Such 
projection methods are fairly common in modern 
eigen-solvers [3]. In particular, the method proposed 



   

here is similar to the generic method of subspace 
projection discussed in [2]. 

Specifically, let us assume that, at the end of k  
iterations, we have a set of approximate eigen-vectors 
( )( 1,2,..., )k

i
x i m=�  computed via early termination of 

RCG (say ~ 0.01ε ). A sub-space is then defined via: 

 ( ) ( ) ( ) ( )

1 2
{ , ,..., }k k k k

m
S x x x= � � �  (3.11) 

Next, a reduced stiffness and mass matrices are 
constructed over this sub-subspace as follows: 

 
( ) ( ) ( )

( ) ( ) ( )

k k T k

k k T k

K S KS

M S MS

=

=
 (3.12) 

Observe that computing these matrices only requires 
sparse matrix-vector multiplications. The two 
matrices are then used to solve a smaller eigen-value 
problem (exactly) via: 

 ( ) ( ) ( ) ( ) ( )k k k k kK V M V= Λ  (3.13) 

Finally, a sharpened set of eigen-vectors are recovered 
via: 

 ( 1) ( ) ( )k k kX S V+ =  (3.14) 

where: 

 ( 1) ( 1) ( 1) ( 1)

1 2
{ , ,..., }k k k k

m
X x x x+ + + +=  (3.15) 

One can now restart the RCG method with the eigen-
vectors in Equation (3.15) as the starting vectors. This 
leads to the following subspace augmented Rayleigh-
Ritz conjugate gradient algorithm (SaRCG), 
summarized below. 

Subspace Augmented Rayleigh-Ritz Conjugate 
Gradient (SaRCG): 

1. Initialize (1) (1) (1) (1)

1 2
{ , ,..., }

m
X x x x=  (typically 

random vectors). Set 1k =  

2. Compute ( )k

i
x�  with ( )k

i
x  as the starting vectors 

until ( )kg ε≤  ( ~ 0.01ε ), for 1,2, ...,i m= , via 

RCG (version 2). 

3. Construct the reduced matrices via Equation 

(3.12), where 
( )kS   is defined in Equation (3.11), 

and solve Equation (3.13) to find ( )k
Λ  and 

( )kV . 

4. If convergence in 
( )kΛ  has not been achieved, 

construct the updated eigen-vectors 
( 1)kX +

 via 

Equation (3.14),  increment k  and go to step 2. 

This simple extension of the RCG algorithm 
dramatically improves its robustness and 
convergence. The additional computational cost of 

constructing and solving the reduced eigen-value 
problem is negligible. In other words, the primary 
cost in SaRCG, is the sparse matrix-vector 
multiplication (SpMV). Therefore, an efficient 
implementation of SpMV is critical. 

3.5 Voxelization 

The proposed SaRCG method is applicable to any 
finite-element discretization, including the 
tetrahedral discretization of Figure 2. However, in this 
paper, we consider a simple discretization, where the 
geometry is approximated via uniform cubes or 
‘voxels’; the voxel-approach has gained significant 
popularity recently [15]. Since the voxelization need 
not conform to the geometry, it is robust, fast and 
relatively insensitive to the geometric complexity. 
Further, unlike in stress analysis, where a conforming 
mesh is essential, in eigen-mode analysis, a non-
conforming voxelization is often sufficient, especially 
during the early stage of design. This is confirmed 
through numerical experiments later in the paper. 

The voxelization of the geometry in Figure 2 is 
illustrated in Figure 3; it has over a million degrees of 
freedom. Fortunately, even such a large-size problem 
is easily handled via the proposed method. 

   
Figure 3: Brute-force voxelization of the structure.  
The voxelization of a triangulated CAD model, also 
referred to as 3-D scan conversion, is straight-
forward, and is discussed, for example, see [16]. 
Voxels that are partially inside the geometry are 
assigned a density value depending on the number of 
corner nodes that lie inside the geometry. As the 
numerical experiments indicate, the overall 
computational cost for the voxelization is small 
compared to the cost of computing the eigen-modes. 

3.6 Shape Functions 

Given a voxelization, one can choose a variety of 
hexahedral finite element shape functions. The 
simplest are tri-linear shape functions as described in 
[17], where each node-based shape function is of the 
form: 

0.125(1 )(1 )(1 ); 1...8
i i i i
N iξ ξ η η ζ ζ= + + + =   (3.16) 

However, the resulting 8-noded elements are ‘stiff’, 
and convergence is slow especially for higher order 
modes, as illustrated through numerical experiments. 
One could use 20-node or 27-node elements, but 
these increase the memory requirements significantly.  



   

In the context of static problems the authors of [18] 
instead propose the use of three additional bubble-
functions of the form: 
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( , , ) (1 )
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ξ η ζ η
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M
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  (3.17) 

This resulting stiffness matrix will be form:  
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where 
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  (3.19) 

Fortunately, one can condense out the bubble degrees 
of freedom, resulting again in a reduced 24 degrees of 
freedom element stiffness matrix [18]: 

 
11 12 22 21

( \ )
e
K K K K K= −   (3.20) 

While the authors in [18] demonstrate the merit of 
this formulation for static problems, we have adopted 
these bubble functions for eigen-problems. Numerical 
experiments indicate bubble functions are highly 
effective in eigen-problems as well. 

3.7 Assembly-Free SpMV 

The primary computational cost of sparse matrix-
vector multiplication (SpMV), in today’s 
computational architecture, is memory-access, i.e., 
floating-point operations are essentially free [2]. In 
SpMV, there are two types of memory access: (1) 

accessing elements of ( )k

i
x , and (2) accessing elements 

of K and M .  

There is very little one can do about the former, 
except perhaps careful numbering of the mesh nodes. 
However, the cost of accessing elements of K  and M   
can be dramatically reduced through assembly-free 
methods as discussed below. 

Since the geometry is discretized via uniform voxels, 
all elements are geometrically identical. Therefore all 
element matrices are identical (barring a ‘density’ 
assigned to partial voxels). Thus, one need not 
assemble or store the global K  and M  matrices; it is 

sufficient if a single matrix-pair 
e
K  and 

e
M  is stored. 

Consequently, a matrix-free implementation ofKv , 
for example, may be implemented as follows [19]: 

 ( )e e e
e e

Kx K x K x
  = =   ∑ ∑   (3.21) 

In other words, instead of assembling the K  matrix, 

and then carrying out Kx , we first multiply  
e e
K x  and 

then assemble the result.  

3.8 CPU and GPU Implementations 

In the CPU implementation of the assembly-free 
SpMV, parallelization was attained through OpenMP 
commands (www.openmp.org).  

In the GPU implementation using CUDA [20] on 
NVidia cards, SpMV was implemented by assigning 
each node of the voxel-grid to a scalar processor. 
Associated with each voxel node, there are at most 8 
voxel elements, and ‘27’ neighboring nodes. When a 
block of threads are launched, all threads share 
identical element matrices, and therefore a single 
memory fetch of the stiffness and mass element 
matrix per block is sufficient.  

The three degrees of freedom associated with the 27 
nodes are fetched in parallel. In general, during this 
fetch, it is hard to enforce coalesced memory access 
for arbitrary voxel-meshes. For more recent GPU 
cards, we have observed that this is not a serious 
issue. Finally, many of the low-level operations such 
as vector-product were implemented using CUBLAS 
library.  

4. NUMERICAL EXPERIMENTS 

In this Section, we present results from numerical 
experiments based on the RCG and SaRCG 
algorithms. All experiments were conducted on a 
Windows-7 64-bit machine with the following 
hardware: 

• Intel I7 960 CPU quad-core running at 3.2GHz 
with 6 GB of memory; parallelization of CPU code 
was implemented through OpenMp commands. 

• The graphics programmable unit (GPU) is an 
NVidia GeForce GTX 480 (480 cores) with 1.5 
GB. 

• Both the CPU and GPU were configured to run in 
double-precision. 

4.1 Importance of Bubble Functions 

In this experiment, we illustrate the value added by 
the use of bubble functions discussed earlier. 
Specifically, a short cantilevered beam of dimension 1 
x 1 x 5, fixed on end is used in this experiment. In 
Figure 4, the first 4 eigen-modes are illustrated; these 
were computed using a quadratic tetrahedral mesh 
with 45,000 DOF, in SolidWorks [21]. 

 
(1) 3221 Hz              (2) 3221 Hz               



   

   
(3) 14728 Hz           (4) 17412 Hz 

Figure 4: First four modes computed via SolidWorks. 
Next using SaRCG, the first eigen-mode was 
computed for different voxel sizes, with-and-without 
bubble function. As one can observe, the use of bubble 
functions dramatically improves the convergence at 
no additional cost. Similar improvements were 
observed for higher order modes, and for other case-
studies. Therefore, for the remainder of the 
experiments, bubble functions are employed. 

Table 1: First eigen-value of short cantilevered beam, 
with-and-without bubble functions. 

#DOF Without  

Bubble 

(Hz) 

%error With 

Bubble (Hz) 

%error 

 

1650 3278 1.8 3230 0.027 

10000 3236 0.20 3224 0.009 

31000 3228 0.05 3222 0.003 

48000 3226 0.016 3221 0.000 

4.2 Deficiency of RCG 

Next, we illustrate the deficiency of RCG. Using the 
same cantilevered beam example, we computed the 
first four eigen-modes via RCG for different 
tolerances values ε  (see Version 2 of RCG algorithm) 
for a fixed voxel size (55,000 DOF). As one can 
observe in Table 2, even with tight tolerances, RCG 
can miss some of the critical modes or compute them 
out of order … the classic RCG method is not robust. 

Table 2: First 4 eigen-value of beam via RCG. 

 Mode-1 Mode-2 Mode-3 Mode-4 

810ε −=  3260 17423 3566 25611 

910ε −=  3223 3230 17455 25610 

1010ε −=  3222 3222 17455 22846 

1110ε −=  3222 3222 17455 14985 

On the other hand, SaRCG converges to the correct 
set of eigen-modes, even with a coarse tolerance of 

410ε −= , as summarized in Table 3. 

Table 3: First 4 eigen-values of beam via SaRCG. 

 Mode-1 Mode-2 Mode-3 Mode-4 

410ε −=  3221 3221 14851 17455 

1110ε −=  3221 3221 14851 17455 

4.2 Beam: Conforming vs. Non-Conforming 

A premise of this paper is that, for approximate eigen-
mode analysis, a non-conforming mesh may be 
sufficient. We illustrate this through the following 
experiment. The beam from the previous example was 
rotated about its longest axis by an arbitrary angle of 
11 degrees, and the resulting geometry was discretized 
via a non-conforming set of voxels (see Figure 5). 
Then the first four eigen-modes were computed for 
increasing density of the mesh, using SaRCG with 

bubble-mesh, and a tolerance of 410ε −= . 

 
Figure 5: Non-conforming voxelization of a beam. 

Table 4 summarizes the results of this experiment. 
Clearly, non-conforming meshes are never as accurate 
as conforming meshes (for a fixed grid-size). 
However, the inaccuracy can be reduced through 
brute-force computation. 

Table 4: First eigen-value for cylindrical beam 
cantilever using SaCG with tolerance of 10-2. 

#DOF GPU  

Time 

(sec) 

Mode-

1 

Mode-

2 

Mode-3 Mode-4 

55000 9.2 3201 3226 15138 17413 

110000 19.2 3202 3224 14991 17427 

200000 26.9 3215 3216 14892 17420 

300000 44.9 3219 3223 14787 17435 

4.3 Crank-Rod: A Practical Example 

A more realistic example is that of a crank-rod 
illustrated in Figure 6 that is clamped on the inner-
surface of the smaller cylindrical hole. The first eigen-
mode was computed using SolidWorks with default 
mesh parameters. The resulting conforming (second-
order tetrahedral) mesh contains approximately 
90,000 degrees of freedom. The first eigen-mode was 
computed to be 529.6 Hz; the total computational 
time including meshing and solver time was 
approximately 9 seconds. Refinement of the mesh did 
not change the first eigen-mode significantly in 
SolidWorks. 



   

 
Figure 6: First eigen-mode of a connecting-rod at 

529.6 Hz 
In Table 5, the computed eigen-value (via SaRCG) as 
the mesh is refined is summarized. As one can 
observe, the eigen-value converges to the ‘correct’ 
value, and the computational time, is comparable to 
that of SolidWorks, especially when a GPU such as the 
GTX 480 is used.  

Table 5: First eigen-value for crank-rod. 

DOF Mode-

1  

Voxelization   

time (CPU) 

Solution 

 time 

(GPU) 

Solution

 time 

(CPU) 

9,000 515 Hz 0.07 secs 1.6 secs 2.7 secs 

25,000 560 Hz 0.12 secs 2.1 secs 3.7 secs 

80,000 542 Hz 0.4 secs 4 secs 22 secs 

136,000 538 Hz 0.6 secs 7 secs 58 secs 

250,000 533 Hz 1.2 secs 16 secs 151 secs

 

4.4 Knuckle: Accuracy of First Few Eigen-
Modes 

In the next example, we compare the accuracy of 
SaRCG method for the first five eigen-modes for the 
‘knuckle’ problem illustrated in Figure 6a, where the 
two horizontal holes are clamped.  Also illustrated in 
Figure 6b and Figure 6c are the confirming and non-
conforming meshes respectively, with approximately 
150,000 and 250,000 degrees of freedom, 
respectively. 

 
Figure 7: (a) A knuckle component, (b) conforming 

mesh, and (c) voxel-mesh 
The first five eigen-modes as computed using 
SolidWorks, are illustrated in Figure 8; the total 
computational time was approximately 15 seconds. 

 
(1) 2341 Hz           (2) 2484 Hz              (3) 4221 Hz 

   
(4) 5856 Hz           (5) 7595 Hz 

Figure 8: The first 5 modes computed via SolidWorks. 
The corresponding five eigen-modes computed via the 
proposed method are illustrated in Figure 9. The 
eigen-values are within 1~2% accuracy, and the 
computational time was approximately 35 seconds, on 
the GPU, and 1.5 minutes on the CPU. For the next 20 
modes, convergence to within 3~5% was also 
observed. 

 
(1) 2393 Hz           (2) 2445 Hz              (3) 4261 Hz 

   
(4) 5724 Hz           (5) 7534 Hz 

Figure 9: The first 5 modes computed via proposed 
method. 

4.5 Gear Housing: Robustness 

The primary advantages of the proposed method are 
its robustness, simplicity and ability to handle 
geometrically complex structures. To illustrate, 
consider the gear housing illustrated earlier in Figure 
1. The first eigen-mode of the structure computed via 
the proposed method is illustrated in Figure 10. 



   

   
Figure 10: The first mode of the structure in Figure 1. 
The convergence of the first eigen-value with voxel-
size is summarized in Table 6; it demonstrates that 
one can rapidly estimate the eigen-values in a fully 
automated fashion. This is particularly important 
during the early stages of design. 

Table 6: First eigen-value for gear-housing. 

DOF Mode-

1  

Solution 

 time 

(GPU) 

Solution 

 time (CPU) 

150,000 70  7.1 secs 62 secs 

300,000 76  18 secs 2.1 mins 

425,000 74.2  43 secs 3.7 mins 

2,000,000 74.6  191 secs 23 mins 

5. CONCLUSION 

The main contribution of this paper is an assembly-
free implementation of Subspace augmented 
Rayleigh-Ritz Conjugate Gradient (SaRCG), for 
computing the eigen-modes of elastic structures. The 
proposed method is simple, robust and ‘inverse-free’. 
Since the method only requires an implementation of 
a sparse matrix vector multiplication (SpMV), it is 
highly parallelizable, and can be easily implemented 
on modern multi-core architectures. Although the 
method was demonstrated using a non-conforming 
structured (voxel) mesh, it is equally applicable to 
classic conforming meshes.  
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