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a b s t r a c t

In modern finite element analysis (FEA), a mesh is said to be ‘tangled’ if it contains one or more inverted
elements. Tangling can occur, for example, during mesh optimization and mesh morphing. Modern finite
element theory and commercial FEA packages are not designed to handle tangled meshes, i.e., they can
lead to erroneous results. Researchers and practitioners therefore unanimously recommend untangling
prior to analysis.

In this paper, a new mathematical framework for FEA over tangled meshes is proposed. Specifically,
by defining a cell decomposition of a tangled mesh, and an associated set of cell shape functions, it is
shown that FEA can be successfully carried out over tangled meshes. The cell shape functions are
constructed through an oriented linear combination of the classic element shape functions. Numerical
examples illustrate the correctness of the proposed framework. Potential applications of the proposed
framework are also illustrated.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In modern finite element analysis (FEA), the underlying mesh is
required to satisfy numerous topological and geometrical proper-
ties [1–3]. For example, the mesh must: (1) be connected, (2) con-
form to the boundary, (3) be of ‘good quality’, and (4) not contain
inverted elements, etc. In this paper, the primarily focus is on the
last constraint.

Fig. 1 illustrates an unacceptable mesh with one inverted
element. In a later Section, we shall establish that the presence
of an inverted element necessarily implies that the mesh must
contain overlapping elements, i.e., the mesh must be tangled.

Modern finite element theory and commercial FEA packages
are not designed to handle tangled meshes, i.e., they can lead to
erroneous results. This is confirmed later in this paper through a
simple experiment using the commercial package ANSYS [4].
Researchers and practitioners therefore unanimously recommend
untangling the mesh prior to analysis. For example, to quote [5]:
“Because tangled meshes generate physically invalid solutions, it is
imperative that such meshes [be] untangled”, and to quote [6]: “Since
constitutive models for real materials are meaningful only for
uninverted material, standard finite element simulation algorithms
fail as soon as a single tetrahedron inverts …”

Unfortunately, untangling is as difficult as mesh generation and
optimization [7]. Indeed, as pointed in [6], none of these untan-
gling methods are guaranteed to work, and “failure to untangle a
ll rights reserved.
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single tetrahedron forces the simulation to fail for most real world
constitutive model”. Therefore, a new extension to FEA is proposed
in this paper; this extension provides the necessary framework for
handling tangled meshes.

The remainder of the paper is organized as follows. In Section 2,
a brief literature review reveals the practical challenges posed by
tangled meshes. Then, in Section 3, the mathematical ambiguity
posed by tangled meshes is identified and isolated. Then, the
notions of the cell decomposition and the cell shape function are
introduced to resolve the ambiguity. Finally, a critical theorem for
handling tangled meshes is established. In Section 4, a practical
implementation for FEA over tangled meshes is discussed. This is
followed by numerical experiments in Section 5. Conclusions and
future work are addressed in Section 6.
2. Literature review

Tangling of finite element meshes can occur today during:
�
 Mesh generation: Mesh generators are generally adept at
constructing high quality non-tangled meshes of complex
geometries. Yet, for example, during all-hex meshing, tangling
can inadvertently occur, resulting in a mesh failure [8]. The user
must then attempt a remesh with a different set of mesh
parameters.
�
 Mesh optimization: Similarly, mesh optimizers, in an attempt
to improve mesh quality, can inadvertently introduce tangling
[9–12]. Further, classic notions of mesh quality are inappropri-
ate in the presence of tangles [9,12–14]. Therefore, the mesh is

www.elsevier.com/locate/finel
www.elsevier.com/locate/finel
http://dx.doi.org/10.1016/j.finel.2013.04.004
http://dx.doi.org/10.1016/j.finel.2013.04.004
http://dx.doi.org/10.1016/j.finel.2013.04.004
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.finel.2013.04.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.finel.2013.04.004&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.finel.2013.04.004&domain=pdf
mailto:suresh@engr.wisc.edu
http://dx.doi.org/10.1016/j.finel.2013.04.004


Fig. 1. (a) A tangled mesh and (b) a close-up of the tangling (observe the inverted element).
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first untangled [15], and then optimized [9]. More recently,
research efforts have focused on improving the quality of
meshes while untangling [5,7,12].
�

Fig. 2. An illustrative Poisson problem.
Mesh morphing: When the underlying geometry is modified, it
may be advantageous to morph, i.e., stretch and transform, an
existing mesh rather than remesh [16]. Various mesh morphing
techniques exist today [16]. Unfortunately, all mesh morphing
methods, especially the simple and efficient ones, can lead to
tangled meshes [16].
�
 Mesh deformation: Last, but not the least, in large-scale
deformation, excessive node movement can result in tangling
[17], and remeshing can result in a significant loss in accuracy
[18]. The concept of invertible finite elements was developed in
[6,19] specifically to address this problem. In [6,19], the authors
propose a numerical strategy of modifying the constitutive
model in the presence of inverted elements. While this method
leads to visually correct results and is a practical solution
to large-deformation computer-graphics problems, the theore-
tical basis is not fully established. Indeed, the authors state:
“We heuristically assume that each element is as uninverted as
possible, …” In [20], the concept of invertible finite element was
further extended to provide a smooth extension of arbitrary
isotropic hyper-elastic energy. Once again, heuristics were used
to achieve numerical efficiency; to quote [20]: “In fact, we
provide a heuristic that prevents the need for the costly SVD
whenever the material is in this uninverted region.” In contrast,
the method proposed in this paper does not entail heuristics.

Thus, the inability of modern FEA to handle tangled meshes has
put a severe burden on the user and FEA related technologies. In
passing, we note that the s-FEM framework was proposed in [21]
for handling overlapping elements, but s-FEM does not apply to a
tangled mesh containing inverted elements. On the other hand, a
preliminary FEA framework for handling tangled meshes (with
inverted elements) was proposed in [22]. In this paper, this
preliminary framework is formalized through a sharper theory,
and is accompanied by a robust and efficient implementation.
3. Proposed framework

The objective of this Section is to identify the specific problem
posed by tangled meshes.

3.1. Problem setting

As a vehicle for discussion, consider the Poisson problem [1]:

Find u∈H1
0ðΩÞZ

Ω
ð∇vÞdð∇uÞdΩ¼

Z
Ω
vf dΩþ

Z
ΓN

vqdΓ

∀v∈H1
0ðΩÞ ð3:1Þ
where Ω⊂ℜn;n¼ 1;2;3 is a domain with a smooth boundary; see
Fig. 2 for an illustrative example.

In the classic finite element analysis (FEA) of the above
problem, a finite element mesh is first constructed over the
domain [1]; see Fig. 3a. By construction of the mesh, the elements
are positively-oriented, non-overlapping and form a quasi-disjoint
decomposition. Specifically, given an interior node (see Fig. 3b), let
ω be the union of all elements E1; E2; ::: attached to the node. By
construction of the finite element mesh [23]:

ω¼ ∪
i
Ei

Ei∩Ej ¼∅; i≠j ð3:2Þ
In modern FEA, to satisfy the ‘continuity’ requirement of

u; v∈H1
0ðΩÞ in Eq. (3.1), the function space is defined as follows. Over

each element Ei surrounding a node, element shape functions Ni are
defined such that: (1) Ni takes a value of 1 at that node, (2) Ni goes to
zero at all other nodes of that element, and (3) neighboring shape
functions Ni and Nj are continuous across element boundaries. A
typical element shape function is illustrated in Fig. 4.

Due to the quasi-disjoint decomposition, the element shape
functions N1;N2; ::: can be ‘stitched’ together into single hat
function ϕ over the region ω; see Fig. 5. From this construction,
it can be shown that (page 41 of [24]):

ϕ∈H1
0ðωÞ ð3:3Þ

In other words, ϕ is sufficiently smooth and goes to zero on the
boundary of the region surrounding the node identified. Further, ϕ
can be trivially extended to zero over the remainder of the mesh.
This process is repeated for each node i to yield hat functions ϕðiÞ.

Finally, one seeks an approximate solution of the form:

u¼∑
i
ûðiÞ

ϕðiÞ ð3:4Þ

where ûðiÞ is the degree of freedom associated with node i. Due to
Eq. (3.3), it can be shown that [25], [24]:

u∈H1
0ðΩÞ ð3:5Þ

3.2. Problems posed by a tangled mesh.

Unfortunately, the above process breaks down in a tangled mesh.
To identify the underlying reason, a few definitions are essential.
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Fig. 3. (a) A finite element mesh, (b) the region ω surrounding a node.
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Fig. 4. An element shape function Ni .
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Fig. 5. Hat function ϕ defined over the region ω.
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To begin with, the orientation of simplicial elements is defined here
as follows.

Definition 1. In 2D, a triangle element defined by three points abc
(in that order) is positively/negatively oriented if the interior of the
element lies to the left/right of the oriented segment ab, or
equivalently bc or ca. □

Definition 2. In 3D, a tetrahedral element defined by four points
abcd (in that order) is positively/negatively oriented if the interior of
the element lies to the left/right of the oriented plane abc. □

One can show that if a simplicial element is positively/nega-
tively oriented as defined above, then the determinant of its
Jacobian is positive/negative [5].

Definition 3. Let the orientation of a simplicial element be
denoted by Θk, where Θk ¼ 71. □

Finally, a tangled mesh is defined in this paper as follows.

Definition 4. A connected and topologically valid finite element
mesh is tangled if it contains elements of opposite orientation. □

An example of a tangled mesh is illustrated in Fig. 6a. Given a
connected and topologically valid finite element mesh that is
acceptable by modern FEA, it is assumed that the tangled mesh
is obtained through a pure node movement, i.e., the topology is
not modified. Fig. 6b illustrates a node attached to an inverted
element.

One can now establish the following result.

Lemma. In a tangled mesh, there must exist a pair of neighboring
overlapping elements.

Proof. In a tangled mesh, consider any element with a negative
orientation and one of its neighbors with a positive orientation
(such a pair must exist in a connected tangled mesh). In 2-D, let
the two neighboring triangles be defined by abc (the positive
element) and bac′ (the negative element). By definition, the
interior of abc lies to the left of ab, and the interior of bac′ lies to
the right of ba, i.e., to the left of ab. Thus there are points that
belong to both elements, i.e., the two elements overlap. Similar
arguments hold in 3-D. □

The above lemma implies that there are points within a mesh
that belong to multiple elements, the hat function ϕ is ill-defined/
ambiguous at such points; see Fig. 6b.

The ambiguity of ϕ can be resolved in multiple ways. For
example, ϕ at an overlapping point can be defined as: (1) the
maximum of all element shape function values at that point, or
(2) the sum/average of these values, and so on. However, in
addition to resolving the ambiguity, Eq. (3.3) must also be
satisfied; the next Section discusses the proposed methodology.

3.3. Proposed theoretical framework

In this Section, the focus is on defining the hat-function ϕ at
each node of a tangled mesh such that it is unambiguous, and it
satisfies the continuity requirement of Eq. (3.3). Once this is done,
the finite element framework for tangled meshes can be easily
established.

As in the previous Section, the focus is on a single node within
a mesh and the set of elements attached to it. These elements are
allowed to tangle in an arbitrary manner. We retain the previous
definition of ω as the (set) union of all elements attached to the
given node (see Eq. (3.2)). However, since a point within ω can
belong to multiple elements, we define an index associated with
each point within ω as:

IðpÞ ¼ kjp∈Ek
� � ð3:6Þ

i.e., the index associated with a point within a mesh is the
(integer) set of all elements containing that point. Note that, in a
non-tangled mesh, the index of every point is a unique element



Fig. 7. Cells within a tangled mesh.
Fig. 8. Cells indices.

Fig. 6. (a) Tangled mesh, and (b) elements surrounding a given node.
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number. However, in a tangled mesh, all permutations and
combinations are possible. Further, points may share the same
index, leading to the notion of a cell.

Definition 5. A cell is the set of all points with identical index I. □

For example, Fig. 7 illustrates seven distinct cells within ω.
Observe that a cell need not be convex, or even connected.

Fig. 8 illustrates the indices associated with the cell
decomposition.

Henceforth, cells will be denoted by Cα;Cβ; :::. Since cells are
associated with a unique index, we have:

ω¼ ∪
α
Cα

Cα∩Cβ ¼∅; α≠β ð3:7Þ
In other words, the cells induce a quasi-disjoint decomposition

of ω.
Just as an element shape function Ni is defined over each

element Ei in a non-tangled mesh, a cell shape function Sα is
defined here over each cell Cα as:

Sαð⋅Þ ¼ ∑
k∈Iα

ΘkNkð⋅Þ ð3:8Þ

where Θk is the orientation of the element Ek. These cell shape
functions form the basis of the proposed finite element frame-
work. Indeed, the most critical theorem in establishing the
proposed framework for tangled meshes is stated and proven next.

Theorem:. The cell shape functions defined via Eq. (3.8) over the cell
decomposition of Eq. (3.7) satisfy the following properties: (1) they
are continuous across cell boundaries, and (2) they vanish on the
boundary of ω.

Proof. Consider the first part of the proof. Let Cα and Cβ be two
neighboring cells, with indices Iα and Iβ . It must be proven that
the cell shape functions Sαð⋅Þ and Sβð⋅Þ are continuous across the
common boundary. To this end, consider the difference between
the two functions Sα−Sβ; one can group the terms into three
categories:
Sα−Sβ ¼ ∑

k∈Iα∩Iβ
½� þ ∑

k∈Iα−Iβ
½� þ ∑

k∈Iβ−Iα
½� ð3:9Þ

The first term contains the contribution from every element k that
belongs to both Iα and Iβ . For every such element, Nk is continuous
across the common boundary, therefore the first term vanishes on the
boundary, independent of the orientation Θk. Next consider an
element k in the second term, i.e., the element is in Iα but not in Iβ .
This implies that in crossing from Cα to Cβ , we must exit element Ek.
Observe that exiting Ek can only occur in twoways: (1) simultaneously
exit ω, or (2) enter a neighboring element Ej. In the first case, Nk is
necessarily zero at the boundary of point of ω. Therefore, all such
contributions vanish from the second term. In the second case of
exiting Ek and entering one of its neighbors Ej, there are again two
cases: (2a) Ek and Ej are of the same orientation, and (2b) Ek and Ej are
of opposite orientation. If the elements are of the same orientation,
then Ej must belong to Cβ , and ΘkNk ¼ΘjNj. Therefore these
contributions vanish from the 2nd term. Finally, if Ek and Ej are of
opposite orientation, then Ej must also belong to Cα , therefore
ΘkNk þ ΘjNj ¼ΘkNk−ΘkNj, which also vanishes since the two ele-
ment functions are continuous at that point. Through a similar
argument, the third term of Eq. (3.9) also vanishes. Thus Sαð⋅Þ and
Sβð⋅Þ are continuous across the common boundary.

Now consider the second part of the proof where it must be
shown that if Cα intersects the boundary of ω, then Sα is necessarily
zero on the boundary. Observe that the boundary of any Cα must is
also the boundary of at least one element Ek. Since we are exiting Cα ,
we must also be exiting the element Ek. Once again, exiting Ek can
only occur in two ways: (1) simultaneously exit ω, or (2) enter a
neighboring element Ej. In the first case, Nk is necessarily zero at the
boundary of point of ω. In the second case Ek and Ej must necessarily
be of opposite orientation (since we are also exiting ω). As before, the
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contributions from both elements cancel out at such boundary points,
and therefore, Sα vanishes.

Finally, exactly as in classic FEA [24], due to the quasi-disjoint
decomposition and continuity, the cell shape functions Sα can be
stitched together to define ϕ at a node, and therefore Eq. (3.3)
holds true.

3.4. Finite element assembly

The previous section introduced the concept of cells and cell
shape functions for establishing the proposed FEA framework.
However, cells are unnecessary in a practical implementation of
FEA over a tangled mesh. In other words, there is no need to
explicitly compute the cell decomposition; the underlying reason
is as follows.

Upon stitching the cell shape functions Cα , an equivalent
definition for the nodal shape functions is simply given by:

ϕðpÞ ¼ ∑
kjp∈Ek

ΘkNkðpÞ ð3:10Þ

In other words, the hat function at any point is simply the
oriented linear combination of all element shape functions of
elements attached to that node, containing that point. Observe
that when the elements are not tangled this recovers the classic
definition. Generalizing this to an arbitrary node i yields:

ϕðiÞðpÞ ¼ ∑
kjp∈Ek ;Ek∈κðiÞ

ΘkN
ðiÞ
k ðpÞ ð3:11Þ

where κðiÞ is the set of all element attached to node i. These ϕðiÞ are
now combined to construct approximate solutions:

uð⋅Þ ¼∑
i
ûðiÞ

ϕðiÞð⋅Þ ð3:12Þ

Regrouping terms yields:

uðpÞ ¼ ∑
kjp∈Ek

Θk ∑
ijEk∈κðiÞ

ûðiÞNðiÞ
k ðpÞ ð3:13Þ

Observe that the inner summation is the description of the field
over one element, and is identical to that used in classic finite element.
Indeed, for a given element, one can define ℕkðpÞ as the collection of
element shape functions over all nodes attached to the element:

ℕkðpÞ ¼ Nði1Þ
k ðpÞ Nði2Þ

k ðpÞ ::: NðimÞ
k ðpÞ

n o
ð3:14Þ

Further, one can define the unknown degrees of freedom
associated with all nodes attached to an element as:

ûk ¼ ûði1Þ ûði2Þ ::: ûðimÞ
n o

ð3:15Þ

This leads to the approximation:

uðpÞ ¼ ∑
kjp∈Ek

ΘkℕkðpÞûk ð3:16Þ

Upon substituting Eq. (3.16) into Eq. (3.1), and eliminating the
auxiliary degrees of freedom the following is obtained:Z

Ω
∇∑

j
ΘjℕjÞTd ∇∑

k
ΘkℕkÞdΩ

 #
û¼

Z
Ω

∑
j
ΘjℕjÞf dΩ

  "
ð3:17Þ

The left-hand side of Eq. (3.17) can be regrouped as:

∑
j

Z
Ω
Θ2

j ∇ℕ
T
j d∇ℕjdΩþ∑

j
∑
k≠j

Z
Ω
ΘjΘk∇ℕT

j d∇ℕkdΩ ð3:18Þ

Since ℕkðpÞ is zero outside of element k, the integration
in Expression (3.18) can be restricted to the element itself.
In addition, since Θj ¼ 71,Θ2

j ¼ 1. Therefore Expression (3.18)
simplifies to:

∑
j

Z
Ej
∇ℕT

j d∇ℕjdΩþ∑
j
∑
k≠j

Z
Ej∩Ek

ΘjΘk∇ℕT
j d∇ℕkdΩ ð3:19Þ
The first term of Expression (3.19) corresponds to the stiffness
matrix in classic FEA. The second term, on the other hand, captures
the coupling between overlapping elements. Observe that, while
there may be many overlapping elements that contain the same
point, only two elements need to be considered at a time.

In summary, to solve the Poisson equation via finite element
over a tangled mesh, the following terms must be computed (the
summation is interpreted in the usual sense of finite element
assembly):

Kclassic ¼∑
j

Z
Ej
∇ℕT

j d∇ℕjdΩ

Koverlapping ¼∑
j
∑
k≠j

Z
Ej∩Ek

ΘjΘk∇ℕT
j d∇ℕkdΩ

f oriented ¼∑
j

Z
Ej
Θjℕ

T
j f dΩ ð3:20Þ

Finally, the following linear system of equations must be
solved:

ðKclassic þ KoverlappingÞû¼ f oriented ð3:21Þ
Observe that if there are no overlaps, then Koverlapping is

identically zero. In addition, in a non-tangled mesh, all elements
are necessarily positively oriented (see Lemma of previous Sec-
tion), and therefore f oriented reduces to f classic, i.e., classic FEA is
exactly recovered.

While the above finite element implementation targets the 2-D
Poisson equation, the implementation is easily generalized to
other elliptic equations. Numerical examples later illustrate the
validity the method for a variety of field problems in 2-D and 3-D.
4. Implementation

In this Section, the implementation of the proposed framework
is discussed in further detail.

4.1. Overlap detection

The proposed methodology requires integrating over regions
that are common to two elements; see Eq. (3.20). Therefore, the
first step is to identify elements that overlap. A naïve Oðn2Þ
implementation entails checking all elements against all other
elements. A more efficient strategy relies on the earlier Lemma
that states that “neighboring elements with opposite orientations
will overlap”. This serves as the basis of the following proposed
algorithm:
1.
 Seed a stack with all pairs of neighboring elements with
opposite orientation (each such pair must necessarily overlap).
2.
 While the stack is not empty:
a. Pop the top of the stack. This yields the element pair (e1, e2).
b. If this pair has been processed already, continue to step a.
c. If the elements do not overlap, continue to step a.
d. (Else) Record the overlap.
e. For all neighbors en of e1, add (en, e2) to stack.
f. For all neighbors en of e2, add (en, e1) to stack.
The computationally expensive part of the above algorithm is
step c, i.e., determining if two elements overlap. For simplicial
elements, this amounts to convex polytope/convex polytope
intersection [26].

4.2. Algorithm: correctness and complexity

In order to establish the correctness of the above algorithm, the
following assumption is essential.



Fig. 9. (a) Acceptable overlapping and (b) unacceptable when two elements exactly
overlap.

Fig. 10. (a) Overlapping region of elements Ej and Ek, and (b) the triangulation of
the overlapping region.

Fig. 11. Thermal conduction problem.

Fig. 12. (a) Valid mesh and (b) tangled mesh.
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Assumption. If two elements overlap, there exists a neighbor of
one of the elements that the other element overlaps, i.e., if
Ei∩Ej≠∅, then ∃Ek∈NðEiÞ: Ek∩Ej≠∅ or ∃Ek∈NðEjÞ: Ei∩Ek≠∅.

In other words, the scenario in Fig. 9a is acceptable, while that
of Fig. 9b where two elements exactly overlap is disallowed.

Given this assumption, the following theorem on the correct-
ness of the above algorithm can be established.

Theorem. In a tangled mesh, all overlapping element pairs are
detected via the above algorithm.

Proof. Assume the contrary, i.e., assume that there exists an
overlapping pair ðEi; EjÞ that was never inserted into the stack; in
other words the algorithm failed to identify this pair. Now, let Ek
be a neighbor of Ei. From the assumption above, Ek∩Ej≠∅. Further,
from steps 2e and 2f of the above algorithm it follows that the pair
ðEi; EjÞ must have gone undetected too, i.e., could not have been
part of the stack. This argument holds ad infinitum leading to a
conclusion that no element pair that is topologically connected to
the pair ðEi; EjÞ could have been in the stack. This is not possible
since step 1 of the above algorithm seeds the stack with all pairs of
elements that are neighbors and of opposite orientation. Thus, by
contradiction, the pair ðEi; EjÞ will be detected by the above
algorithm. ■

In the case that two elements exactly overlap, i.e., when the
above assumption is violated, such element pairs can also be
seeded onto the stack. Since the elements must overlap exactly,
this detection is trivial, and is not discussed here.

Next consider the algorithmic complexity. Let m be the number
of neighbors; m¼ 3 for a triangle mesh, m¼ 4 or a tetrahedral
mesh. Let n be the number of overlapping element pairs in a
tangled mesh. For each overlapping element pair, steps 2e and 2f
of the above algorithm will push at most 2m additional element
pairs onto the stack. Further step 2b ensures that an element pair
is only processed once. Therefore, the total number of element
pairs that get pushed to the stack, and thus checked for overlap, is
at most 2mn, which is linear with respect to n.

4.3. Tangled finite element assembly

Recall that performing FEA over a tangled mesh requires
computing the terms in Eq. (3.20). First, Kclassic is computed exactly
as in classic FEA [1]. Next, f oriented is computed as in classic FEA
with one modification: the orientation of the element is accounted
for by multiplying the force components for each element by its
orientation (71) before assembling it into the global f oriented term.

To compute Koverlapping , the overlapping regions is computed
(see previous Section and Fig. 10a). In order to perform the
integration, the overlapping region is subsequently triangulated,
see Fig. 10b.

Now, as in classic FEA, numeric integration is performed over
the Gauss points of the newly formed triangles. To compute ∇ℕj

and ∇ℕk at the Gauss points, the Gauss points from the parametric
element are mapped to the physical (x, y) space, and then the
parametric coordinates of the parent elements Ej, Ek that corre-
spond to the (x, y) location are determined. The gradients ∇ℕj and
∇ℕk are computed at the respective parametric coordinates. As
with f oriented, before adding the local stiffness matrix to the global
Koverlapping matrix, the orientation of the parent elements are
accounted for as in Eq. (3.20).

In the proposed method, the condition number of the overall
stiffness matrix changes when the contribution due to the over-
lapping elements is added. In all examples considered, the condi-
tion number never grew more than a factor of three. However,
additional investigation is required. Further, it is possible that
untangling is a better choice in some scenarios. A distinct
advantage of the proposed method is that it guarantees finite-
termination (unlike untangling).
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5. Numeric examples

The proposed theory is now illustrated through numeric
examples. In particular, the first few examples are ‘validity tests’
[1,25,27] over tangled meshes. (We refer to these as validity tests
rather than patch tests, since the concept of patch-tests is not
established for inverted elements.) These tests are designed in this
paper to identify incorrect theory/implementation by determining
whether the finite elements can capture, to within machine
precision, a field within the space of the finite element basis
functions. In particular, ANSYS 13 [4] is compared against the
proposed methodology. After these tests, the focus turns to a
specific application of tangling, namely mesh morphing.
Table 1
Solution at x¼1, y¼0.

ANSYS 13 Proposed theory

Valid Mesh 1.0000 1.0000
Tangled Mesh 0.9875 1.0000

Fig. 13. Initial untangled mesh (a) and the actual tangled mesh (b) used for
validity tests.

Table 2
Normalized errors for 2-D Poisson problem validity test.

Classic FEA Proposed theory

Linear 1.8438 4.9145e-13
Quadratic 7.5844 4.0306e-12

Table 3
Normalized errors for 2-D plane stress problem validity test.

Classic FEA Proposed theory

Linear 1.6037 2.2277e-12
Quadratic 66.4133 2.9278e-11

Fig. 14. (a) Initial mesh, (b) Portions of the initial untangled me
5.1. Validity test: A simple tangle

Consider a thermal conduction problem over a unit square with
a thermal conductivity of 1. The left edge is set to a temperature of
0, a thermal flux of 1 is applied on the right edge, and the top and
bottom edges are insulated; see Fig. 11. The exact solution to this
problem is uðx; yÞ ¼ x.

The problem is solved over two meshes with linear element
shape functions: (1) a regular valid mesh of Figs. 12a, and (2) a
tangled mesh of Fig. 12b that is constructed by flipping the
x-location of the internal nodes in Fig. 12a about the x¼ 0:5
line. Since the solution falls within the finite element space, the
exact solution should be recovered to within machine precision
(even though the triangles are of poor quality).

Table 1 illustrates the solution for the two meshes at the location
ð1;0Þ, as produced by ANSYS and the proposed methodology. As
expected, with a valid mesh, the exact solution of 1.0 is recovered via
ANSYS 13 [4] and the proposed methodology (to within machine
precision). However, when the mesh is tangled, ANSYS results in a
1.2% error. Increasing the size of the inverted element leads to errors
as large as 10%. On the other hand, the proposed theory yields the
exact solution even in the case of the tangled mesh.

5.2. Validity test: multiple tangles

Next consider triangulating a unit square, see Fig. 13a, and then
randomizing the location of the interior nodes to produce the
tangled mesh shown in Fig. 13b. A (random) linear field
uðx; yÞ ¼ 0:323x−0:651yþ 0:998 was chosen as the exact solution
to a Poisson problem; Dirichlet conditions, Neumann conditions,
and body forces were computed from this field, and applied on the
tangled mesh as follows: Neumann conditions are applied at the
bottom, right, and top boundaries, and Dirichlet conditions are
applied to the left boundary. The objective is to recover the exact
solution using linear elements. Similarly a random quadratic field
was chosen as the exact solution, and the objective was to recover
the exact solution using quadratic elements.

The results are summarized in Table 2 where normalized errors
over all nodal values (defined as absðjju−uExact jjÞ=jjuExact jj) from
classic FEA and the proposed theory are summarized. Observe
that, once again, the classic FEA fails the test in that it leads to
erroneous results. On the other hand, the proposed method leads
to results that are within machine precision accuracy. (It is to be
noted that when in the numerical solution of linear system of
equations, machine precision errors are inevitable, even for well-
conditioned matrices [28]).

As a second test consider repeating the previous example but
for plane stress. Specifically, two random linear displacement
fields:

uðx; yÞ ¼ −0:358þ 0:562xþ 0:906y

vðx; yÞ ¼ 0:233−0:359x−0:670y ð5:1Þ
sh, and (c) the actual tangled mesh used for validity tests.
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were chosen. The boundary conditions corresponding to the above
fields were applied on the square geometry as in the previous
example, i.e., Dirichlet boundary conditions on the left edge, and
Neumann (traction) boundary conditions on the remaining edges.
The two meshes are identical to the previous example. Random
quadratic fields were also chosen.

Normalized errors in solutions from classic FEA and the
proposed theory are summarized in Table 3. As with the previous
example, classic FEA fails the test for the tangled mesh, while the
proposed theory achieves machine precision accuracy.

Similar 3-D tests were also performed on a unit cube, where
the interior nodal positions were randomized. The mesh consists
of 69 tetrahedra, 29 vertices, and upon tangling, 553 overlapping
regions were detected. A portion of the mesh before and after
tangling is shown in Fig. 14b and c, respectively; these are all the
elements that have a face on the bottom or back of the unit cube.

Random linear and quadratic fields are chosen as the exact
solution to a Poisson problem, and an elasticity problem. Surface
tractions are applied to five of the six faces and Dirichlet conditions
are applied to the remaining face. Normalized errors in solutions from
classic FEA and the proposed theory are summarized in Tables 4 and 5
for the Poisson problem and elasticity problem, respectively.

5.3. Convergence test

Next, the proposed methodology is tested for convergence.
Specifically, a function outside the span of the finite elements is
chosen as the exact solution to a 2-D Poisson problem:

uðx; yÞ ¼ eπxcosðπyÞ ð5:2Þ
The domain is a unit square with boundary conditions, etc.

computed from the specified field as follows: Neumann conditions
are applied at the bottom, right, and top boundaries, while
Dirichlet conditions are applied to the left boundary.

The mechanism for introducing tangling is as follows. First, an
initial non-tangled mesh is created within the unit square as in
Fig. 15a. Then, nodes that lie within a circle of radius 0.25 are
Table 4
Normalized errors for 3-D Poisson problem validity test.

Classic FEA Proposed theory

Linear 0.3296 1.7924e-15
Quadratic 1.6116 2.0738e-12

Table 5
Normalized errors for 3-D elasticity problem validity test.

Classic FEA Proposed theory

Linear 1.4035 5.3276e-14
Quadratic 14.1704 1.9298e-11

Fig. 15. (a) Initial mesh and (b) tangled m
mirrored about the center as illustrated in Fig. 15b. However, in the
process of tangling, high-aspect ratio elements are inevitably
introduced. Therefore, the nodes outside the circle are dragged
towards the center of the domain according to the following
heuristic rule:

di←‖ð0:5;0:5Þ−pi‖
pi←pi þ 1:9he−10ð0:25−diÞðð0:5;0:5Þ−piÞ ð5:3Þ

An example of this tangling is illustrated in Fig. 15c.
The Poisson problem is then solved over both the non-tangled

and tangled meshes, and the error in strain energy is computed for
each case. In addition, this test is performed for both linear and
quadratic shape functions. The results of the error in strain energy
as a function of the number of degrees of freedom (as the mesh is
refined) for all four cases are summarized in Fig. 16.

In Table 6 the convergence rates of all four cases are summar-
ized. Observe that the rate of convergence for the tangled mesh is,
for all practical purposes, equal to the non-tangled case.

5.4. Application: mesh morphing

As a specific application of the proposed methodology, considered
here is the problem of mesh morphing with tangling. In finite element
analysis (FEA), when the underlying geometry is modified, an existing
mesh can be morphed to conform to the new geometry, a process
referred to as mesh morphing. An advantage of mesh morphing over
remeshing is that there is a one-to-one correspondence between
mesh nodes before and after morphing. Consequently, operations
such as finite difference computations are less error-prone [16].

Typical mesh morphing techniques include simplex-linear,
simplex-natural neighbor, weighted-residual, FEMWARP, and
esh used in convergence study.

Fig. 16. Error in strain energy as a function of the number of degrees of freedom for
a non-tangled and tangled mesh with linear and quadratic shape functions.



Table 6
Convergence rates.

Shape Mesh Convergence rate

Linear Not tangled 1.02
Linear Tangled 0.97
Quadratic Not tangled 1.88
Quadratic Tangled 1.92

Fig. 17. Initial construction of a mesh that is subsequently morphed.

Fig. 18. A morphed mesh with a poor function space quality.

Fig. 19. Morphed mesh that has undergone edge flipping to improve the
function space.

Fig. 20. Number of overlaps in the mesh of the plate with three holes problem after
morphing and quality improvement.

Fig. 21. Maximum von Mises stress in various morphed configuration with
remeshing and a tangled morphed mesh.
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LBWARP [16]. The simplex-linear mesh morphing technique was
chosen for the examples in this paper. As an example of how this
technique works, consider the initial mesh illustrated in Fig. 17.

The larger hole is now displaced, and the mesh is morphed to
conform to the new geometry, as shown in Fig. 18. Observe that the
quality of the mesh has deteriorated. Furthermore, close inspection
reveals that some of the elements overlap; i.e., the mesh is tangled.
This is typical of mesh morphing; the quality and the degree of
tangling can vary significantly depending on the morphing technique
[16]. To improve mesh quality, an edge flipping technique is used to
result in Fig. 19; however, tangling remains.

In Fig. 20, the number of overlaps (due to tangling) is summar-
ized after: (1) morphing and (2) quality improvement (edge
flipping). Observe that edge flipping can increase or decrease the
number of overlaps.

To illustrate the effectiveness of the proposed method, the
geometry is remeshed (not tangled) for comparison. The specific
quantity of interest is the maximum von Mises stress. Fig. 21
shows that the proposed methodology over the tangled mesh is
consistent with a full remesh.

5.5. 3-D morphing and tangling

In this final example, 3-D mesh morphing is considered. The
bearing block shown in Fig. 22a is morphed so as to increase the
diameter of the bearing surface (center hole) from 63.5 mm to
72 mm; see Fig. 22b. Also shown in the two figures are the
boundary conditions; two of the mounting holes are fixed, while
the third mounting hole has a force in the y and z direction.

The technique used to morph the mesh is similar to that used
earlier in 2-D example where an explicit equation was used to
morph the mesh. The initial untangled mesh is shown in Fig. 23a.
After morphing, the overlapping regions of the tangled mesh are
illustrated in Fig. 23b.

The quantity of interest is the maximum displacement. Table 7
lists this quantity for the initial configuration, the morphed, tangled
configuration, and a remeshed configuration (all quantities are in
mm). Not only is the trend correct, increasing the diameter of the
hole increases the displacement, but the displacement of the
tangled mesh closely matches that of the remeshed solution.



Fig. 22. (a) Initial bearing block design with a hole diameter of 63.5 mm and
(b) final design with a hole diameter of 72 mm.

Fig. 23. (a) Initial mesh that is subsequently morphed and tangled. (b) Overlapping
regions (dark portions) of the tangled mesh.

Table 7
Comparison of maximum total displacement.

Initial configuration Final configuration

Morphed Remesh

Maximum displacement 2.1230e-2 2.5392e-2 2.5371e-2
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6. Conclusion and future work

In this paper an extension to the underlying mathematics of the
classic finite element formulation is proposed. This extension
allows FEA to be used in conjunction with tangled meshes that
were previously considered unacceptable. In addition, it is shown
that the proposed methodology can be easily incorporated into
classic FEA with minor modifications. Numeric experiments illus-
trate the correctness of the proposed methodology; this is in
contrast to commercial implementations of FEA.
While only simplicial elements were considered, the extension
to non-simplicial elements, e.g. quadrilateral and hexahedral
elements, is currently being investigated. From a tangling per-
spective, the most critical difference between simplicial and non-
simplicial elements is that non-simplicial elements can also suffer
from implicit tangling in that an element can overlap with itself.

While the theory, in principle, extends to non-linear problems,
further investigation and experiments are required. An investiga-
tion into the impact of tangling on the condition number of the
underlying linear system is also required. Finally, and perhaps
most critically, an investigation into the cost/benefit analysis of
untangling versus solving over a tangled mesh is required.
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