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ABSTRACT 
 For very large systems of equations arising from 3-D finite element formulation, pre-conditioned iterative 
solvers are preferred over direct solvers due to their reduced memory requirements. However, in the finite-
element analysis of thin-structures such as beam and plate structures, iterative solvers perform poorly due to 
the presence of poor quality elements. In particular, their efficiency drops significantly with increase in the 
aspect ratio of such structures. 

 In this paper, we propose a dual-representation based multi-grid framework for efficient iterative analysis 
of thin-structures. The proposed iterative solvers are relatively insensitive to the quality of the elements since 
they exploit classical beam and plate theories to spectrally complement 3-D finite element analysis. This leads 
to significant computational gains, as supported by the numerical experiments.  
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1. INTRODUCTION 

 Thin-structures such as beams, plates and shells 
find a wide variety of applications across many 
disciplines including civil, automotive, aerospace, 
MEMS, etc. Figure 1 illustrates examples of such 
thin-structures. 

 
(a) A chassis structure. (b) Printer-housing. 

Figure 1: Examples of thin structures. 

Currently, three different strategies exist for the 
structural analysis of such thin structures [1]: 

1. Dimensionally reduced analysis: This is the 
traditional approach where the thin-structure is 
first dimensionally reduced to 1-D (for beams) or 
2-D (for plates and shells). The reduced problem 
is then solved relying on lower-dimensional 
theories such as Euler-Bernoulli (for beams) and 
Reissner-Mindlin (for plates/shells) [2, 3]. 

Though highly efficient, such methods are hard to 
integrate within today’s 3-D design environment, 
and with increased geometric complexity, 
automated construction of reduced models can be 
cumbersome [4, 5]. Further, the inability of these 
reduced models to capture stress-concentration 
and other 3-D effects limits their use in certain 
applications. 

2. 3-D finite-element analysis: When accurate 
stress-prediction is critical and/or when 3-D CAD 
integration is important, one must rely on a full 
3-D structural analysis. Among 3-D methods of 
analysis, finite element analysis (FEA) is the most 
popular because of its ability to capture complex 
geometric features and ease of implementation. 
However, use of 3-D FEA to analyze thin 
structures entails a high level of discretization to 
avoid Poisson-locking and ill-conditioning [1, 6]. 
This, in turn, leads to a large system of equations 
[1, 7, 8], that can be computationally challenging 
to solve. We shall discuss methods for solving 
such large systems of equations in a later Section 
as this is the primary focus of this paper. 

3. Alternate 3-D methods: Alternate formulations 
have also been proposed; these include: (1) solid-
shell, where relatively low order shape functions 
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are used across the thickness to overcome ill-
conditioning [9, 10]; (2) reduced integration 
techniques that employ lower-order polynomials 
for computational efficiency [11-14]; and (3) 
hybrid or mixed formulations, where both 
displacement and stresses are used as free 
variables [1, 12, 15]. Some of the limitations of 
these methods are discussed, for example, in [16]. 

In this paper, we propose a fourth strategy that 
combines the simplicity of dimensionally reduced 
models and the generality of 3-D FEA: 

4. (Proposed) Dual-Representation based 3-D 
Analysis: In the proposed method, we rely on 
standard 3-D FEA for assembling the linear 
systems of equations. However, these equations 
are solved with the help of classical reduced 
dimension models. This is achieved by combining 
the multi-grid idea [17, 18] with the recently 
proposed dual-representation method for thin-
structure analysis [16, 19-23]. We show that the 
proposed method leads to rapid convergence, and 
the computational cost is relatively insensitive to 
the element quality; this is in contrast to standard 
pre-conditioners. Further, we illustrate that the 
proposed method can be combined with standard 
pre-conditioners to further improve 
computational efficiency. Finally, since the 
method is based on 3-D FEA, it can accurately 
capture 3-D stress-concentration, unlike classical 
dimension reduction methods. 

The remainder of the paper is organized as follows. In 
Section 2, we present background material related to 
pre-conditioning and multi-grid. In Section 3, the 
proposed framework and the underlying concepts of 
dual-representation are discussed. In Section 4, 
numerical examples are presented to support the 
proposed methodology, followed by conclusion and 
future work in Section 5.  

2. BACKGROUND 

2.1 Pre-conditioned Iterative Methods 

 As is well known, accurate 3-D FEA of thin-
structures entails high level of discretization, 
resulting in a large system of equations of the form: 

 Kd q=  (2.1) 

 These large linear systems put severe memory 
requirements on direct solution techniques [8, 24, 
25]. Thus, they are typically solved using Krylov 
subspace based iterative methods, like conjugate 
gradient (CG), minimum residual (MINRES), bi-
conjugate gradient (BCG), quasi-minimum residual 

(QMR), etc [25], together with appropriate pre-
conditioners. 

 A pre-conditioner is a matrix or a method that 
transforms the original system of equations to one 
that has the same solution, but has more favorable 
spectral properties [25, 26]. For example, if M  is a 
non-singular matrix that approximates the stiffness 
matrix K  in a spectral sense, then it can be used as a 
pre-conditioner by multiplying the system in 
Equation (2.1) with its inverse from the left [24]: 

 1 1M Kd M q− −=  (2.2) 

 There are several types of pre-conditioners 
available today, and amongst them incomplete 
factorization based pre-conditioners are most widely 
used; these include incomplete Cholesky (IC) for 
symmetric positive definite stiffness matrices, and 
incomplete LU for non-symmetric or indefinite 
stiffness matrices [24, 25, 27, 28]. Alternate 
formulations based on fixed fill-in or drop-tolerance 
are possible, but require a priori prediction of the 
fill-in or drop-tolerance parameters, making it 
difficult to predict the required storage and 
associated benefits for a given problem [29]. 

 While IC with no-fill, i.e., IC(0), can typically 
reduce the computational cost during iterative 
analysis, its efficiency drops rapidly as the element 
quality drops. As a specific example, Figure 2 
illustrates the number of iterations required to solve 
a simple I-beam problem via IC(0) based pre-
conditioned MINRES (p-MINRES). For the analysis 
in Figure 2, number of 3-D elements was kept 
approximately constant for different aspect ratios, 
i.e., the element quality dropped with increasing 
aspect ratio. The iterations were terminated when six 
orders of magnitude drop in initial residual was 
achieved. 

 As one can observe, the computational cost of these 
preconditioned iterative solvers increases rapidly 
with the aspect ratio of the structure. 

x

yz

 
Aspect-ratio = Length/Web-thickness 

(a) A thin structure problem. 
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(b) Performance of IC(0). 

Figure 2: Performance of IC(0) pre-conditioner. 

2.2 The Multi-grid Method 

An alternate and powerful ‘pre-conditioner’ is 
based on the multi-grid concept. Since multi-grid 
plays an important role in this paper, we provide a 
brief overview of the method; additional details can 
be found, for example, in [18]. 

In the multi-grid method, the Krylov methods are 
accelerated by using grids of varying densities. This 
exploits the fact that low-frequency error-
components that are not eliminated by a Krylov 
‘smoothener’ can be projected onto a coarser grid, 
where it appears as high-frequency, and can easily be 
smoothed out. The process is repeated until the 
coarsest grid on which direct solution or smoothing is 
performed. Thereafter the results are prolonged back 
up the sequence of grids to the finest level on which 
the solution is sought [8, 17, 18]. A 2-level multi-grid 
is depicted in Figure 3. 

Restriction Prolongation

3-D Coarse Mesh  
Figure 3: A correction scheme using 3-D coarse mesh. 

 The stability and efficiency of the multi-grid 
method depends on the choice of prolongation and 
restriction operators. Additionally, the performance 
also depends on the selection of the coarse mesh, and 
on the algebraic technique used for constructing the 
coarse stiffness matrix in the case of algebraic multi-
grid method [17, 18, 30].  

 Multi-grid methods have been proposed for linear 
elasticity problems and for thin-structures [8, 31-35]. 
However, as mentioned earlier, a coarse mesh based 
multi-grid is prone to Poisson locking and ill-

conditioning, which undermines the quality of the 
coarse grid correction. 

The deterioration in the coarse grid approximation 
demands more correction steps degrading the 
performance of the method, especially with decrease 
in element quality [36]. Hence, an alternate 
formulation was proposed by Ruge and Brandt [36], 
which used a composite grid (3-D or 2-D with 1-D) 
with auxiliary functions specified on 1-D nodes. 
These auxiliary functions were defined to capture the 
shear stress at 1-D nodes. The method was limited to 
straight boundary domains, required use of 
structured mesh and involved complex computations 
for 1-D auxiliary functions, making a 3-D 
implementation fairly difficult; also acknowledged by 
the authors [36]. 

A new approach for thin-structure analysis was 
proposed by Mikulinsky [37], which employed a 1-D 
mesh for coarse grid correction when solving 2-D or 
3-D beam problems using finite difference method. 
Mikulinsky started with 3-D (or 2-D) equations of 
elasticity and ignored terms containing derivatives 
with respect to the thickness-direction coordinate. 
Though the method was capable of handling curved 
boundaries, it was limited to boundaries which could 
be represented by continuous functions, making it 
difficult to account for features like holes, cuts, 
stiffeners, etc. Moreover, it required a structured 
mesh, as in [36], and before applying 1-D correction, 
the fine mesh had to be coarsened to a level where 
there were only three nodes along beam thickness, 
limiting the efficiency of the overall process. 

3. PROPOSED METHODOLOGY 

3.1 Proposed Concept 

The work presented in this paper is based on the 
idea of using lower dimensional correction. However, 
instead of explicitly modifying 3-D equations of 
elasticity as in [37], we use classical dimension 
reduction theories in conjunction with dual-
representation for a one-time construction of lower 
dimension stiffness matrix, prolongation and 
restriction operators. 

The use of lower dimension physics helps avoid 
Poisson-locking and ill-conditioning, while dual-
representation helps in capturing geometric 
complexity. The concept is illustrated via a two-level 
correction step in Figure 4.  
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(via dual-representation)

Prolongation

(via dual-representation)

1-D Coarse Mesh

(via dual-representation)  
Figure 4: A correction scheme using dual-

representation based 1-D beam formulation. 

3.2 Dual-Representation: Beams 

 The dual-representation method for beams as 
explained in [22], exploits 1-D beam physics, but is 
implemented within a 3-D environment by appealing 
to divergence theorem. To understand this, let us 
consider a 3-D beam of length L  and an arbitrarily 
varying cross-section ( )A x , oriented along x-
direction, as in Figure 2. Also assume that to capture 
generalized Euler-Bernoulli beam kinematics [3, 19];  

( ) ( )

( ) ( )

( ) ( )

0 0
0

0

0

, ,

, ,

, ,

v w
u x y z u x y z

x x

v x y z v x

w x y z w x

∂ ∂
≈ − −

∂ ∂
≈

≈

 (3.1) 

we use a 11 degrees-of-freedom (DOFs) beam element 
comprising of bending and stretching [19], as in 
Figure 5, where eL  is the element length.  

L
e
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Figure 5: A 11-DOF beam element [21]. 

 If bending is captured via Hermite cubic 

polynomials [12], ( )0 1; /
e

H t t x L≤ ≤ = , and 

stretching via second order Lagrange Polynomials 
[38], ( )2 1 1ξ− ≤ ≤� ; /

e
x Lξ = , then the components 

of Euler Bernoulli beam stiffness matrix can be given 
by splitting the 3-D domain, say Ω  as [ ] ( )0,L A x⊗  [1, 

12, 38];  

( )
( )

( )( )

, , ,

0 , , ,

...

...

e
u v wL
i x i xx i xx

EB ij u v w

A x j x j xx j xx

N yN zN
K E dA dx

N yN zN

  − −  =   − −   
∫ ∫ (3.2) 

where ( ), 1...13i j =  and,  

( )

( )

( )

2
1 8

1 3 1 4

1 3 1 4

0

0 0

0 0

u

v

w

N

N H t

N H t

ξ ×

× ×

× ×

 =   
 =   
 =   

�

 (3.3) 

such that 3-D displacements are approximated as; 

0 1 0 1 0 1; ;u v w

D D Du N d v N d w N d≈ ≈ ≈  (3.4) 

for,  

 { }1 1 3 2 1 1 2 2 1 1 2 2, , , , , , , , , ,z z y y

Dd u u u v v w wθ θ θ θ=  (3.5) 

 If ( )A x  is constant or sufficiently simple, then 
Equation (3.2) can be evaluated analytically. 
However, with increase in geometric complexity 
analytical evaluation becomes more challenging. 

 Instead of splitting the 3-D domain as above, dual-
representation method appeals to divergence 
theorem, which states that for any differentiable 

vector function F
�

 [39]: 

 F d F n d

Ω ∂Ω

∇⋅ Ω = ⋅ Γ∫ ∫
� � �

 (3.6) 

where n
�

 is the boundary normal and ∂Ω is the 

boundary of Ω . Hence, we need to find a functionF
�

, 

such that F∇⋅
�

 is exactly equal to the integrand in 
Equation (3.2). One such possibility is (see [22]): 
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, , , ,
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w w

i xx j xx

N N y N N
z

y N N N N

y N N N Nz
F E e

N N N N

z
N N

  +       − +   
 

  +   = +   − −    
 
 + 
 
  

� �
 (3.7) 

where, ze
�

 is the unit vector along z-direction.  

 This gives the dual-representation beam stiffness 
matrix, as [22]; 

( )DR beam ij
K F n d−

∂Ω

= ⋅ Γ∫
� �

 (3.8) 

 Thus, for any given geometry, we can obtain a dual-
representation beam stiffness matrix using simple 
boundary integration, where the integration needs to 
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be performed only on the boundaries where 0zn ≠  

( zn  is z-component of the boundary normal) [22]. 

Also note that for uniform cross-section geometries, 
dual-representation gives exactly the same stiffness 
matrix as classical reduced dimension formulation, as 
was shown in [22]. 

3.3 Dual-Representation: Plates 

 An analogous dual-representation formulation for 
3-D plates can be given, based on Kirchhoff-Love 
plate kinematics [3, 16];  

( )

( )

( ) ( )

0

0

0

, ,

, ,

, , ,

w
u x y z z

x

w
v x y z z

y

w x y z w x y

∂
≈ −

∂
∂

≈ −
∂

≈

�

�

�

 (3.9) 

 If we assume a 2-D discretization based on 12-DOF 
quad element from [40], such that;  

( ) ( )0 2, , Dw x y S dξ η=�  (3.10) 

as in [16], we get Kirchhoff-Love plate stiffness 
matrix as: 

2T T

KLK B DBd z B DBd

Ω Ω

= Ω = Ω∫ ∫ � �  (3.11) 

where, D  is a 3-by-3 constitutive matrix, B  is the 

appropriate strain-displacement matrix [12] and B�  is 

defined such that B zB= �  [16]. 

 Once again exploiting divergence theorem we can 
re-write the stiffness matrix of Equation (3.11), as; 

3

3
T

DR plate z

z
K B DB e n d−

∂Ω

 
 = ⋅ Γ
  

∫
� �� �  (3.12) 

 Please note that for simplicity of expression we 
have only considered bending in the above plate 
formulation, however, we can account for stretching 
in u  and v , via Q9 shape functions [12]. 

3.4 Prolongation and Restriction Operators 

Since our correction-step is based on lower 
dimension physics, the prolongation matrix should 
be defined in such a way that it aptly maps the lower 
dimension kinematic constraints to 3-D nodal 
displacements.  

 Thus, based on the kinematics of Section 3.2, the 

displacements for a 3-D beam node ( ), ,i i ix y z  can be 

given by;  

( ), , 1

1

1

u v w

i i i i x i i x D

v

i i D

w

i i D

u N y N z N d

v N d

w N d

= − −

=

=

 (3.13) 

This can be used to define a mapping for every 3-D 
node as;  

( )

( )

( )

, ,,:

,:

,:

u u v w

beam i i i x i i x

v v

beam i

w w

beam i

P i N y N z N

P i N

P i N

= − −

=

=

 (3.14) 

which in turn gives us our beam prolongation and 
restriction operators as follows [19, 20];  

;
T

u v w T

beam beam beam beam beam beamP P P P R P = =    (3.15) 

 In a similar manner the prolongation and 
restriction operators for a 3-D plate node can be 
constructed. For the kinematics of Equation (3.9), the 
mapping analogous to Equation (3.14) is;  

( )

( )

( )

,

,

, :

, :

, :

u

plate i i x

v

plate i i y

w

plate i

P i z S

P i z S

P i S

= −

= −

=

 (3.16) 

which gives the respective plate operators as [16];  

;
T

u v w T

plate plate plate plate plate plateP P P P R P = =    (3.17) 

3.5 Algorithm 

 Typically in a multi-grid setup the number of fine 
grid iterations pre and post coarse correction are 
fixed a priori. For example, Mikulinsky fixes them at 
1 and 2 respectively [37], while various combinations 
are tested in [31, 35]. However, as suggested in [18], 
the coarse-grid correction is most effective when 
high-frequency errors in the fine grid have been 
eliminated. This forms the basis of our criteria for 
switching between 3-D and lower dimension mesh. 

 Suppose we are using a residual minimization 
Krylov iterative method, like MINRES or QMR. The 
basis of these algorithms suggests that the residual 
should drop with every iteration [25]. If the residual 
stagnates over successive iterations, we can conclude 
that the iterative method is struggling and needs 
assistance in the form of coarse-grid or lower-
dimension correction, later being the case for our 
implementation. A similar analogy may be used for 
energy minimization methods, like CG, using energy 
stagnation criteria. 

 For implementation we define a stagnation-
parameter (SP) and stagnation-limit (SL). We start 
with 3-D iterations and apply correction whenever 
relative residual is less than SP for three consecutive 
iterations (we call this a ‘stagnation point’). If the 3-D 
residual after correction is less than pre-correction 3-
D residual we continue with 3-D iterations, else we 
reduce SP by some factor, say f , discard correction 
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and continue with 3-D iterations till new ‘stagnation 
point’ is reached. At any point in this adaptive 
process if SP becomes less than SL, we conclude that 
the lower dimension correction is not helping 3-D 
iterative process, hence, stop applying corrections 
beyond that point. The algorithm is illustrated via a 
flowchart in Figure 6. 

 
Figure 6: Proposed algorithm. 

4. NUMERICAL EXAMPLES 

Since the problems considered in this paper lead to 
symmetric-positive-definite matrices; we shall use 
incomplete-Cholesky (IC) pre-conditioners for 
comparison purposes. In particular, we will use IC 
with no-fill, IC(0).  

For all numerical examples, we assume that 

Young’s modulus 112 10E = × , Poisson ratio 

0.33ν = , load per unit area is 0 1q = , 310SP −=  and 
1610SL −= , unless otherwise stated. Further, we use 

MINRES iterative method and convergence is 
assumed when six orders of magnitude drop in 
residual is achieved. 

Unless otherwise specified, a 20 beam element 
mesh is used for 1-D beam discretization and a 12-by-
12 quad element mesh is used for 2-D plate 
discretization, for construction of corresponding 
dual-representation 1-D beam or 2-D plate stiffness 
matrix, as well as prolongation and restriction 
matrices. The 3-D model is discretized using 
sufficiently large number of tetrahedral elements, 
such that standard FEA does not “lock”. 

4.1 Example 1: Element Quality Insensitivity 

In this first experiment, we consider a cantilevered 
rod fixed on the left end, and with a tip load of 0q , on 

the right, as shown in Figure 7. The 3-D mesh used 
for this problem has roughly 60,000 DOFs (about 
18,000 tet-elements) for all aspect ratios. Thus, with 
increasing aspect ratio, the element quality drops, 
with minimum 3-D mesh quality of 0.45 for aspect 
ratio of 10 and 0.3 for aspect of 50. The convergence 
plots for various aspect ratios are shown in Figure 7. 

 
Figure 7: Bending of a rod of different aspect ratios. 

It is evident that with increase in aspect ratio the 
proposed method performs much better than p-
MINRES with IC(0), and the combined 
implementation is nearly insensitive to element 
quality. 

Similar behavior is seen for a uniformly loaded 
thin-plate with built-in edges, as shown in Figure 8. 
The 3-D mesh for these examples has approximately 
130,000 DOFs (about 37,000 tet-elements, with 
minimum element quality or 0.3 and 0.21, and 
average 3-D mesh quality 0f 0.82 and 0.74). 

 
Figure 8: Problem of thin-plate with built in edges. 

4.2 Example 2: Complex Geometry 
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To demonstrate the capability of our method in 
handling complex geometry, we re-visit the I-beam of 
Figure 2. Once again 20 1-D beam elements are used 
for computation of beam stiffness and projection 
matrices. The number of iterations required for each 
method is shown in Figure 9. Once again, the 
advantage of the proposed method is evident. The 3-
D mesh used for this case comprises of about 33,500 
tet-elements, with average mesh quality dropping 
from 0.90 to 0.68 with increase in aspect ratio from 
25 to 250. 
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Figure 9: Performance on complex beam geometry. 

A plate example having a pattern of rectangular 
shaped protrusions with filleted sections (on one 
face) is also presented in Figure 10. It is non-trivial to 
model such a plate using reduced dimension 
methods; however, dual-representation captures the 
impact of features, and leads to rapid convergence as 
shown in Figure 10. The plate is assumed to have 
built-in edges and has a uniform load of 0q , on the 

face without any pattern (illustrated in Figure 10). 
The 3-D mesh of this problem contained roughly 
41,000 tet-elements with 150,000 DOFs and average 
3-D mesh quality of 0.76. 
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Figure 10: Performance on 3-D plate with features. 

4.3 Example 3: Why dual-representation? 

To assert the significance of capturing actual 3-D 
geometry for lower dimension correction, and to 
highlight the importance of dual-representation in 
the proposed framework, we consider a tapered 
cantilevered rod, fixed on the left end and having a 
tip load of 0q  on the right end. For 1-D stiffness 

matrix formulation, we use two methods; (1) dual-
representation (DR), which accounts for actual 
geometry, and (2) Euler-Bernoulli (EB) assuming 
average uniform cross-section across the beam 
length. A comparison of performance of DR and EB 
based correction is given in Figure 11, for the tapered 
beam of aspect ratio 10 and 15. 
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Figure 11: Tapered-rod: comparison of Euler-

Bernoulli (EB) with Dual-Representation (DR). 

Clearly dual-representation formulation plays a 
vital role in the correction process. For this example, 
we used a 3-D mesh with about 32,000 tet-elements, 
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with an average quality of 0.82 for aspect ratio of 10, 
and 0.77 for aspect ratio of 15. 

4.4 Example 4: Capturing 3-D Stress 

Since the proposed method is based on 3-D FEA, it 
is capable of capturing stress concentration, and it 
does so more efficiently.  

To illustrate this, we consider a tip-loaded t-shaped 
cantilevered beam, fixed on the left end and having a 
tip load of 0q  on the right end (similar to that for the 

problem of Section 4.3). The cross-section of the 
beam is as shown in Figure 12. The length of the 
beam was fixed at 200 units, so that the number of 
iterations required for residual convergence by the 
methods “p-MINRES w/ IC(0)” and “MINRES w/ 
DR-Beam” were approximately the same. 
Approximately 34,000 tet-elements were used to 
model the problem with minimum element quality of 
0.25 and average quality of 0.8. 

As illustrated in Figure 12(b), the 3-D stress-error 
with respect to final 3-D solution drops much faster 
for the proposed method. For example, after about 
600 iterations, the relative error in stress is less than 

410−  for the proposed method, while that for the pre-
conditioned iterative method is almost 1. Hence, in 
typical structural analysis applications where stress is 
the quantity of interest one can terminate iterations 
much earlier. 
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Figure 12: Capturing 3-D von-mises stress error: 

proposed versus pre-conditioned iterative method 
(total iterations for convergence ≈ 3,400). 

4.5 Example 5: Beam-Structure 

The proposed method can further be extended to 
beam structures, for example, to solve the problem of 
a 3-D L-shaped solid rod with boundary conditions as 
in Figure 13(a) (where the ratio of cross-sectional 
diameter to length for each arm is 20). 

Tip 

load

Fixed 

face

(a)

(b)

 
Figure 13: (a) L-shaped rod with curved junction; (b) 

1-D model for dual-representation formulation. 

For an equivalent 1-D beam model we use a two 
beam 1-D structure shown in Figure 13(b), and 
discretize each arm with 4 beam elements. The 3-D 
discretization had about 40,000 tet-elements with 
minimum element quality of 0.42 and average quality 
of 0.83. 

The corresponding convergence profile is shown in 
Figure 14, where we compare p-MINRES with and 
without dual-representation based beam correction. 
Use of a curved beam might lead to faster 
convergence. 
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Figure 14: Convergence profile for L-shaped rod. 

4.6 Example 6: Computational Efficiency 

 To illustrate that the proposed method is indeed 
computationally efficient compared to a standard 
pre-conditioned iterative solver, in this section, we 
present in Figure 15 a computational-time 
comparison for the uniformly loaded plate of Figure 
8. 

 The labels used in Figure 15 are as follows:  

• K-3D: time taken to assemble the 3-D finite 
element stiffness matrix computation. 

• IC(0): time taken to compute the incomplete 
Cholesky factorization 
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• K-plate: time taken to compute the dual-
representation 2-D plate stiffness matrix, using 
Kirchhoff-Love plate theory 

• P-plate: time taken to assemble the projection 
matrix 

• Iterations: time taken for the iterative process to 
converge, using either IC(0), dual-representation 
or both. 

The work was carried out using Matlab R2009b on a 
64-bit Windows platform with Intel Core 2 Duo 
process of 3.17 GHz and 3 GB RAM; when no other 
process was being executed. 

 
Figure 15: CPU time comparison. 

 Clearly, the proposed method is much faster than 
the incomplete factorization scheme, where the 
bottleneck is the incomplete factorization process. 
The main reason behind this is that the incomplete 
factorization is based on some form of Gauss 
elimination, which involves multiplicative operations 
on large 3-D matrices; while the dual-representation 
formulation involves simple linear node-wise 
summation. 

5. CONCLUSION 

 In this paper, we have described a dual-
representation based multi-grid framework for 
rapid iterative analysis of thin-structures. The 
proposed scheme exploits the strengths of a 3-D FEA, 
as well as lower-dimension models to improve the 
computational efficiency of standard iterative solvers. 

The method as illustrated for beams and plates shows 
significantly better convergence, especially with drop 
in element quality. Further, the proposed method can 
be combined with existing pre-conditioners, resulting 
in further speed-ups. The proposed method also 
efficiently captures 3-D stress concentration. 
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