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Abstract  

 In multi-objective optimization, a design is defined to be pareto-optimal if no other design exists that is better 

with respect to one objective, and as good with respect to other objectives. In this paper, we first show that if a 

topology is pareto-optimal, then it must satisfy certain properties associated with the topological sensitivity field, 

i.e., no further comparison is necessary. This, in turn, leads to a deterministic, i.e., non-stochastic, method for 

efficiently generating pareto-optimal topologies using the classic fixed-point iteration scheme. The proposed 

method is illustrated, and compared against SIMP-based methods, through numerical examples. In this paper, the 

proposed method of generating pareto-optimal topologies is limited to bi-objective optimization, namely 

compliance-volume and compliance-compliance. Future work will focus on extending the method to non-

compliance and higher-dimensional pareto optimization.  

Keywords: Multi-objective optimization, pareto-optimal, topology optimization, topological sensitivity. 

1. INTRODUCTION 

 Single-objective topology optimization is now a well established field. Specifically, in continuum mechanics, 

numerous methods such as homogenization [1], SIMP [2-4] and level-set [5-9], are now capable of solving a large 

class of single-objective topology optimization problems. Indeed, if a well-defined objective can be articulated, 

such methods can systematically generate insightful design concepts for complex engineering problems. 

 However, designers are often faced with conflicting objectives such as cost, aesthetics and performance of a 

product. Pooling such objectives into a single objective (through some weighted means) is fraught with theoretical 

and practical difficulties [10, 11]. In such scenarios, one must typically pose and solve multi-objective problems. 

For example, a relatively simple two-objective topology optimization problem is as follows: “Find the set of 

topologies with minimal compliance and volume”.  
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 Such multi-objective problems do not usually posses a single ‘optimal’ solution. Instead they exhibit pareto-

optimal solutions, where a solution is ‘pareto-optimal’ if no other solution exists that is better with respect to one 

objective, and as good with respect to other objectives [12]. Pareto-optimal solutions succinctly address the 

challenge posed by conflicting objectives [13]. Further, such pareto-optimal designs typically lie on a pareto-

optimal frontier (see Figure 1) whose computation is also of significant importance. 

 

Figure 1: Pareto-optimal points, and pareto-frontier. 

 Despite the importance of pareto-optimal topologies in continuum mechanics, fundamental questions remain. 

In this paper, we focus on three of the most important ones identified below. 

1. How does one determine if a given topology is pareto-optimal?  

The definition of pareto-optimality (unfortunately) suggests that a topology is pareto-optimal only if a ‘better’ 

topology cannot be found. However, we show here that a topology is pareto-optimal if certain inherent properties 

associated with the topological sensitivity field are satisfied, i.e., no further comparison to other topologies is 

necessary. 

2. If a topology is indeed pareto-optimal, what are the local properties of the pareto-frontier at that point?  

While local properties of pareto-frontiers have been addressed in various disciplines [14, 15], it has not found its 

way into topology optimization. Here, we derive the local properties of the pareto-frontier. 

3. Finally, can one trace the pareto-optimal frontier of a multi-objective topology optimization problem? 

Pareto-tracing are pursued today via genetic algorithms; for example see [16], or by treating the multi-objective 

problem as single-objective via sequential and weighted-sum optimization methods. We discuss here a 

deterministic and efficient approach that exploits the pareto-optimal properties mentioned above, together with 

the fixed-point iteration [17] to generate pareto-optimal topologies. 
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 The remainder of the paper is organized as follows. In Section 2, multi-objective topology optimization is briefly 

reviewed. In Section 3, we review the concept of topological sensitivity, and establish fundamental results related 

to pareto-optimal designs. These results are then exploited to propose a new method for tracing pareto-frontiers 

in topology optimization. In section 4, we propose a method to trace the pareto-frontier for compliance-

compliance optimization at a fixed volume. In Section 5, numerical experiments comparing the proposed method 

against SIMP-based methods are presented, followed by conclusions in Section 6. 

2. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION 

 There is significant amount of literature on topology optimization (ex: review paper [18]), and multi-objective 

optimization [10-12, 14, 19]. We focus here on the intersection of the two disciplines. Specifically, we consider the 

multi-objective topology optimization problem: 

 

{ }1 2, ,...,

( , ) 0

( , ) 0

N
D

Min J J J

h u

g u

Ω⊂

Ω =

Ω ≤

 (2.1) 

where: 

 

Ω

:  Objectives (ex: compliance, volume,...)

:  Geometry/topology to be computed

:  Region within which the geometry must lie

:  The displacement field of elasticity

:  Equality constraints

:  Inequality co

iJ

D

u

h

g nstraints

 (2.2) 

Broadly, there are 3 classes of popular methods for solving Equation (2.1): 

1. Sequential optimization 

2. Weighted optimization 

3. Stochastic/Evolutionary optimization 

Other pareto-methods such as normalized normal constraints (NNC) [20] are used extensively in (generic) multi-

objective optimization, but have not been applied to multi-objective topology optimization (to the best of author’s 

knowledge), and are therefore not reviewed here. 

2.1 Sequential Optimization 

 The primary concept in sequential optimization is to modify Equation (2.1) as follows: 
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where all objectives except one are fixed at some prescribed (reasonable) value [4, 7, 21]. Then the single objective 

problem is solved to yield a pareto-optimal design. The process is then repeated for a different choice of 

constraints, and so on. This is easy to implement, but can be computationally prohibitive since each ‘run’ of a 

topology optimization itself is often expensive. While sequential optimization provides valuable insights, it is 

rarely used in large-scale multi-objective optimization. 

2.2 Weighted Optimization 

 In weighted optimization, Equation (2.1) is transformed as follows: 

 

1 1 2 2 ...

( , ) 0

( , ) 0

N N
D

Min w J w J w J

h u

g u

Ω⊂
+ + +

Ω =

Ω ≤

 (2.4) 

where the weights are prescribed a priori. By appropriately choosing the weights, a set of pareto-optimal designs 

are obtained. This method has numerous deficiencies [10, 11], but can be useful if implemented in conjunction 

with engineering insights [22].  

 A variation of this method is the ‘compromise formulation’ wherein the weights were supplemented by min and 

max for each objective function. This was exploited in [13] for finding pareto-optimal topologies with ‘minimal 

compliance and maximal first eigen-value’. 

 Yet another variation is the physical programming method where other aspects of the objectives, for example, 

the range within which it must lie, etc, are taken into account in the formulation [23]. Further, for specific 

applications, such as compliant mechanisms, other weighted-optimization methods have also been successfully 

implemented [24].  

 In summary, weighted-methods are very powerful, but have two inherent limitations: (1) not all pareto-optimal 

designs can be obtained via suitable weighting, and (2) finding suitable weights is non-trivial [10, 11, 25]. 

2.3 Stochastic/Evolutionary Optimization 

 Today, the most popular methods for multi-objective optimization are based on the non-dominated 

evolutionary or genetic algorithms [19, 26-28].  
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 The underlying principle behind this class of methods (there are numerous variations) is as follows. First, one 

generates a population of designs. Then, through stochastic methods, typically via genetic coding and mutation, 

some of the designs are modified. The ‘least-fit’ designs are then eliminated, and the cycle is repeated. Specific 

examples of such methods for multi-objective topology optimization are reviewed below. 

 In [26], the authors deal with multi-objective topology optimum design, where the two objectives are 

minimization of volume and maximum displacement under given loading. Multi-objective evolutionary 

algorithms are used with Voronoi diagrams serving as a geometric representation.  

 In [29], the two objectives considered in topology optimization are the minimization of compliance, and 

maximization of the first eigen-value, with the amount of material to be used serving as a constraint. An 

additional parameter of penalty-timing is also considered. 

3. PARETO-OPTIMAL TOPOLOGIES 

 One of the objectives of this paper is to develop methods to directly trace the pareto-frontier in multi-objective 

topology optimization. As a specific example in this section, we consider a two-objective topology optimization 

problem, where one of the objectives is the compliance, and the other is the volume.  

3.1 A Two-Objective Problem 

 In particular, assume that a structure Ω  must lie within a space D , illustrated in Figure 2, of unit volume, and 

dimensions as shown. The structure Ω  is fixed on one edge, and carries a unit-load F  on the other end as 

illustrated; the material properties are E = 1, and 0.3ν = . It is implicitly assumed that, for any structure DΩ ⊆ , 

the displacement satisfies the elasticity equation [30]. 

 

Figure 2: A structural problem on the domain D . 

 We now define a 2-objective topology optimization problem: 

 { },
D

Min J v
Ω⊂

= Ω  (3.1) 

where the first objective is the compliance: 
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F

J Fu=  (3.2) 

(
F

u  is the displacement at the load-point) and the second objective is simply the volume (or area in 2-D). 

 Various pareto-optimal solutions exist for Ω . For example, the special case of DΩ =  is illustrated in Figure 3, 

i.e., where the structure occupies the entire space provided. This is a pareto-optimal design since it is impossible 

to find a stiffer structure of the same volume. 

 

39; 1.0J v= =  

Figure 3: A pareto-optimal topology of volume 1.  

 On the other hand, consider the structures illustrated in Figure 4 (their compliances computed by solving the 

elasticity equation are also provided). Are these topologies pareto-optimal with respect to the objectives in 

Equation (3.1)? This is fairly hard question that cannot be answered today without either computing the pareto-

optimal frontier or searching for ‘better’ designs.  

   

(a) 162; 0.3;J v= =  (b) 66; 0.5;J v= = (c) 56; 0.65;J v= =  

Figure 4: Are these topologies pareto-optimal with respect to Equation (3.1)?  

 The lack of an ‘inherent’ test to determine pareto-optimality of topologies in continuum mechanics strongly 

influences algorithms to generate such topologies. Thus, our first objective is to develop an inherent test. But, first 

we ‘tame’ the notion of pareto-optimality since our objective is to trace the frontier. 

3.2 Nearby Topologies  
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 It is well known that establishing ‘global minimum’ even for a single-objective optimization problem is hard 

(except in rare circumstances) [31]. Similarly, establishing global pareto-optimality is an open problem; we 

instead focus here on “local pareto-optimality”.  

 Towards this end, we introduce the following definition.  

Definition 1:  Topologies Ω  and 'Ω  are δ -apart if their symmetric volume difference is less than δ , i.e., 

 ( , ') \ ' '\ δ∆ Ω Ω = Ω Ω + Ω Ω ≤V  (3.3) 

Observe that Equation (3.3) is the sum of the volumes of two set differences. Thus, if Ω  is obtained from 'Ω  by 

subtracting a disc of volume δ , then \ ' 0Ω Ω =  and '\ δΩ Ω = , thus Ω  and 'Ω  are δ -apart. Figure 5 illustrates 

various topologies that are δ -apart from Figure 4c, where δ  denotes the volume of a small disc, shown in Figure 

5. Thus, given a volume, nearby-topologies can be constructed by: (a) subtracting or adding a single volume of δ , 

(b) subtracting or adding 2 volumes of / 2δ , (c) subtracting and adding a volume of / 2δ , (d) subtracting/adding 

multiple volumes of / Nδ , such that Equation (3.3) is satisfied. 

 

Figure 5: Topologies δ -apart from Figure 4c. 

 With this notion of nearby-topologies, we now define ‘local’ pareto-optimality by comparing it against other 

topologies 'Ω  that are ‘sufficiently close-by’. 

Definition 2:  A topology Ω  is said to be locally pareto-optimal if it is pareto-optimal with respect to all 

topologies that are within a distance δ  apart from it, where δ  is sufficiently small.  

 In the next section, we provide necessary and sufficient conditions for a topology to be pareto-optimal. Towards 

this end, we review the concept of topological sensitivity (a.k.a. topological derivative).  

3.3 Topological Sensitivity: A Review 
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 The notion of topological derivative has its roots in the seminal paper by Eschenauer, et. al. [32]; this concept 

has been later explored by numerous authors, for example in [17, 32-39]. The classic ‘subtractive’ topological 

sensitivity deals with the sensitivity of field problems to subtraction of infinitesimal but arbitrary shaped features, 

typically discs in 2-D and spheres in 3-D [38]. For simplicity, we assume that the discs/spheres lie in the interior 

of the domain (see [40, 41] for a treatment of boundary insertion/perturbation). For such shapes, the subtractive 

topological sensitivity captures the first order impact of inserting a small circular hole within a domain on various 

quantities of interest [33-39, 42].  

 For any quantity of interest J , if ( )B pε  represents a ball of radius ε  at point p∈Ω  then the topological 

sensitivity is defined as the ratio of difference in quantities of interest (with & without hole) to the measure of the 

hole volume, i.e., 

 
( \ ( )) ( )

( ) ;
( )

S J B p J
p p

B p

ε

ε

Ω − Ω
= ∈ΩT �  (3.4) 

where the super-script ‘S’ denotes subtraction. Note that the topological sensitivity is a field since the impact 

depends on the location of the hole. 

 For the compliance J  in Equation (3.2), the topological sensitivity field in Equation (3.4) simplifies to the 

following closed-form expression, for 2-D plane-stress problems [43]: 

 
2

4 1 3
( ) : ( ) ( )

1 1

S p tr tr
ν

σ ε σ ε
ν ν

−
= −

+ −
T �  (3.5) 

Clearly, Equations(3.4) and (3.5) are only valid where there is material.  

 Equation (3.5) states that, once the stress and strain are determined for a given structural problem, the 

change in compliance due to insertion of a hole of area δ  at any point p  is given by: 

 ( ) ( )SJ p oδ δ∆ = +T  (3.6) 

where, by definition: 

 
0

( )
lim 0

o

δ

δ

δ→
→  (3.7) 

 In parallel, one can also consider the case of material addition and its impact on the compliance. It is implicitly 

assumed here that the region D −Ω  is modeled using a soft-material with 1Eε � ; such soft-modeling is essential 

in topology optimization to avoid singularities.  
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 Analogous to Equation (3.4), one can define the topological sensitivity to addition of material: 

 
( ( )) ( )

( ) ;
( )

A J B q J
q q D

B q

ε

ε

Ω∪ − Ω
= ∈ −ΩT �  (3.8) 

where the super-script ‘A’ denotes addition. For the compliance J  in Equation (3.2), similar to Equation (3.5), 

one can show that the topological sensitivity, for 2-D plane stress problems, with respect to material addition 

simplifies to [44]: 

 
4 1 3

( ) : ( ) ( )
3 (1 )(3 )

A
p tr tr

υ
σ ε σ ε

υ υ υ

−
= − −

− + −
T �  (3.9) 

( )A pT �  captures the first order impact of adding a small circular material in the soft-region on the compliance.  

 Since subtracting/adding material always increases/ decreases compliance, we have, for any pair of points 

p∈Ω  and q D∈ −Ω : 

 ( \ ( )) ( ) ( ( ))J B p J J B qε εΩ > Ω > Ω∪  (3.10) 

i.e., 

 
( \ ( )) ( ) ( ( )) ( )

0
( ) ( )

J B p J J B q J

B p B q

ε ε

ε ε

Ω − Ω Ω∪ − Ω
> >  (3.11) 

Thus, from the definitions in Equations (3.4) and (3.8): 

 ( ) 0 ( ), ,S Ap q p q D> > ∀ ∈Ω ∀ ∈ −ΩT T  (3.12) 

The above equation is fairly important in this paper, and we therefore introduce a definition to be employed later. 

Definition 3:  A pair of fields ( , )S A
T T  is said to be topologically valid if Equation (3.12) is satisfied, i.e., if: 

 min( ) 0 max( )S A> >T T  (3.13) 

♦ 

Given a pair of valid topological fields, one can compute the corresponding Ω by considering the level-set: 

 { | ( ) } ( , )Sp D p l L lΩ = ∈ > ≡T T  (3.14) 

where the parameter l  is so chosen such that the desired volume is achieved, i.e., 

 vΩ =  (3.15) 
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The stresses & strains are related through E  in Equation (3.5), and through Eε  in Equation (3.9).  

For the structure in Figure 4b, the topological sensitivity field is illustrated in Figure 6, with typical values as 

shown.  

 

Figure 6: The topological sensitivity field for compliance for the topology in Figure 4. 

From Figure 6, observe that: 

• If a disc of volume δ  is subtracted at the denoted point p , the compliance will change by 0.84( ) 0.84J δ δ∆ = = , 

i.e., removing material at p  will increase the compliance (make the structure softer) by a significant amount. 

• If material of volume δ  is added at the denoted point q , then the  compliance will change by 910J δ−∆ = − , i.e., 

adding material at q  will decrease the compliance (make the structure stiffer) but only slightly. 

3.4 Local Pareto-Optimality 

 We now state and prove the main claim on local pareto-optimality by exploiting the topological sensitivity fields. 

Lemma 1: A necessary condition for a domain Ω  to be locally pareto-optimal with respect to Equation (3.1)  is 

that its topological sensitivity fields must satisfy the inequality: 

 min( ) min( ) 0S A+ ≥T T  (3.16) 

Proof: Let 'Ω  be a nearby topology with identical volume at a distance of δ  from it, i.e., 'Ω is constructed from 

Ω  by subtracting M discs of radii 0S

i
δ > , and adding N discs of radii 0

A

j
δ > , i.e., 

 
1 1

' \ ( ) ( )S A
i j

M N

i j

i j

B p B q
δ δ

= =

Ω = Ω ∪∑ ∑  (3.17) 

such that:  

 
1 1

/ 2
M N

S A

i j

i j

δ δ δ
= =

= =∑ ∑  (3.18) 
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Note that the change in compliance is:  

 
1 1

( ) ( ) ( )
N M

S S A A

i i j j

i j

J p q oδ δ δ
= =

∆ = + +∑ ∑T T  (3.19) 

 If Ω  is locally pareto-optimal, 'Ω  cannot have a lower compliance implying: 

1 1

( ) ( ) ( ) 0, , , ,
N N

S S A A S A

i i j j i i i j

i i

J p q o p qδ δ δ δ δ
= =

∆ = + + ≥ ∀∑ ∑T T  (3.20) 

As a particular choice subtract material of volume / 2δ  at a location where S
T  takes a minimum, and add 

material of volume / 2δ  at a location where A
T  also takes a minimum, i.e., 

 min( ) / 2 min( ) / 2 ( ) 0S AJ oδ δ δ∆ = + + ≥T T  (3.21) 

In the limit of 0δ → , from Equation (3.7) 

 min( ) min( ) 0S A+ ≥T T   

♦  

 Thus, to determine if a topology Ω  satisfies the necessary condition to be locally pareto-optimal, one must: 

1. Solve the elasticity problem for , &u ε σ  over D  

2. Compute the topological sensitivity fields per Equations (3.5) and (3.9). 

3. Check if Equation (3.16) is satisfied. 

 Indeed, from the above inherent test, one can easily determine that the topologies in Figure 4a and Figure 4c 

are not locally pareto-optimal. However, the topology in Figure 4b indeed satisfies the necessary condition for 

local pareto-optimality. In theory, second order checks are necessary to ensure local minimum. However, in 

practice, we found that the algorithms based on the above Lemma, trace the local minima. 

3.5 Pareto-Optimal Topologies 

 We now use the above result to arrive at an algorithm for tracing pareto-optimal topologies. In particular, let Ω  

be a locally pareto-optimal topology. The objective is to compute a nearby pareto-optimal topology ′Ω  whose 

volume is less than that of Ω  by v∆ , i.e., 

 v′Ω = Ω − ∆  (3.22) 
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We rely on a fixed-iteration scheme similar to the ones discussed in [17, 45] in that: (1) given a domain Ω  one can 

compute its topological field, and (2) given a valid topological field, one can compute the corresponding Ω from 

Equation (3.14). Further, by imposing the above termination criteria for local pareto-optimality, we arrive at the 

following algorithm.  

( )

min max

: A pareto-optimal topology ,  step size  

: A near-by pareto-optimal topology 

         such that :

Do 

     , ( )

       ( , )

     ( , )

While (

S A

S A

Given v

Find

v

v v

l L l v

L l

Ω ∆

′Ω

′Ω = Ω − ∆

′← Ω −∆

′Ω ←Ω

′≡ ← Ω

′← =

′Ω ←

<

T T T T�

T�

T�

T T
min min

) | ( 0)S A+ <T T

 

Algorithm 1: Finding a pareto-optimal topology with volume decrement of v∆ . 

 The existence of the parameter l in the above algorithm hinges on the existence of a pareto-optimal domain ′Ω  

satisfying Equation (3.22). If ′Ω  exists, then its topological sensitivity pair exists and can be computed. Since this 

pair satisfies Equation (3.12), there exists an l  satisfying: 

 S Al> >T T  (3.23) 

Existence does not imply that the algorithm will converge! Indeed, if a very large step-size is taken for v∆ , the 

algorithm may never converge. In practice, 0.1v∆ ≤  is recommended. 

 To further optimize the step-size v∆ , one can estimate the change in compliance at each step. Further, since 

DΩ =  is pareto-optimal, we have the following algorithm to trace the pareto-optimal curve. 
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( )

: A domain ,  

: Pareto-Optimal Topologies ( , )

Do 

     ,

     Algorithm-1( , )

     

While ( 0)

∆

Ω←

←

≡

Ω← Ω ∆

← −∆

>

S A

Given D v

Find J v

D

v D

v

v v v

v

T T T

 

Algorithm 2: Tracing the pareto-optimal curve. 

The strength and weakness of the proposed algorithm is that it moves from one local minimum to the next closest 

local minimum (with a new set of volume constraints) on the pareto-optimal curve. By exploiting the closeness of 

locally pareto-optimal solutions (as defined in the paper), the computational expense of pareto-tracing is reduced 

dramatically, as demonstrated via numerical experiments. The short-coming is that a ‘far away’ and alternate 

pareto-optimal solution cannot be detected via the proposed method. 

4. COMPLIANCE-COMPLIANCE OBJECTIVE 

 Thus far, the paper focused on two-objective problems where one of the objectives was the volume. Now 

consider the two-objective problem: 

  
{ }1 2

0

,
D

Min J J

v

Ω⊂

Ω =
 (4.1) 

where the volume is constrained, and the two objectives are the two compliances associated with two loads, 
1

F   

and 
2

F ; see Figure 7. Although only one of the loads will be applied at any instant, it is not known a priori, which 

of the two loads will be applied. Thus, the goal is to find a topology of a given volume fraction, that is stiff with 

respect to both loads … a pareto-optimal problem. 

 
Figure 7: Two load cases, 

1
F  and 

2
F  
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 Note each objective has its own topological sensitivity field. For such problems, it is possible to show (using the 

methods of the previous Section), that a domain Ω  is locally pareto-optimal if and only if: 

 
1 1

, ,  such that ( ) ( ) 0S Ap q D p q∀ ∈Ω ∀ ∈ −Ω + =T T  (4.2) 

 
2 2
( ) ( ) 0S Ap q+ ≥T T  (4.3) 

i.e., it is impossible to find a nearby topology with identical volume and compliance 
1

J , but lower compliance
2

J . 

This can be simplified into a single condition: 

 
,

( ) ( ) 0
S A

p q D

p q

∀ ∈Ω ∀ ∈ −Ω

+ ≥T T
 (4.4) 

where 

 

2 2

1 1 2 2

2 2

1 1 2 2

1 2
0, 0

T T T

T T T

S S S

A A A

w w

w w

w w

= +

= +

> >

 (4.5) 

leading to: 

 min( ) min( ) 0S A+ ≥T T  (4.6) 

Here weights, 
1

w  and 
2

w  represent, for example, the likelihood of load 
1

F  or 
2

F  being applied. Observe that 

Equation (4.6) is a generalization of Equation (3.16).  

 We now use the above result to arrive at an algorithm for tracing pareto-optimal topologies. In particular, let Ω  

be a locally pareto-optimal topology when 
1 2

0, 1w w= = . The objective is to compute a nearby pareto-optimal 

topology ′Ω  with identical volume and modified load preference, i.e., 

 
1 1

2 11

new

new

w w w

w w

= + ∆

= −
 (4.7) 

We have the following algorithm to trace the pareto-optimal curve. 
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Algorithm 3: Tracing the pareto-optimal curve for 
1 2

J J− . 

The strength of the proposed algorithm is that it moves from one load preference to the next without returning to 

the initial design domain D .  

5. NUMERICAL EXPERIMENTS 

 In this Section, we illustrate the results from Sections 3 and 4 through numerical experiments. Unless otherwise 

stated, for all the experiments below, the default parameters for the proposed algorithm are as follows: 

• We trace the pareto-optimal curve starting from 1v =  to 0.5v =  in 10 steps, i.e., 0.05v∆ = .  

• The domain D  is discretized into (60,30) linear quad elements. 

• We use a Gaussian filter of radius 0.8 to smoothen the topological sensitivity field. This is similar to the use of 

filters in SIMP [4]. 

For SIMP, we use the Matlab code described in [4] with the following parameters: 

• For each volume fraction v , we determine the optimal topology by minimizing compliance (i.e., single 

objective minimization). 

• The domain is again discretized into (60,30) linear quad elements. 

• We use a filtering radius of 1.5 to smoothen the sensitivity field and use a penalty of 3.0 for density.  

• The termination criteria is when the density change is less than 0.01 [4]. 

In addition, to trace the pareto-optimal curve via SIMP, we use two strategies: 
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1. SIMP-restart: Here, for each volume fraction, the density is initialized to a uniform density of specified 

volume fraction. 

2. SIMP-continuous: Here, for each volume fraction, the density is initialized to the termination density of 

optimal topology of the previous volume fraction. 

In the proposed method and the two strategies of SIMP, the most dominating cost is finite element analysis 

(FEA). Therefore, in the experiments below, we note the number of FEA runs required to reach an optimal 

topology, for a given volume fraction, via the proposed algorithm, and via single-objective SIMP-restart & SIMP-

continuous.  

5.1 Beam with Center Load 

 The first set of experiments is on the classic cantilevered beam-problem posed below. We assume that structures 

Ω  must lie within a space D , illustrated in Figure 8 of unit volume, and dimensions as shown. The structure Ω  

is to be fixed on one edge, and must carry a unit-load F  on the other end as illustrated; the material properties 

are 1E = , and 0.3ν = .  

 

Figure 8: The cantilevered beam-problem 

 The table below summarizes the results for various volume fractions. For each volume fraction, we also provide: 

(1) the compliance as predicted by the proposed method, and that from SIMP, and (2) the total number of finite 

element analysis runs needed for each method. There are minor differences between the topologies generated by 

the two methods, but the compliances are almost identical, confirming that we have achieved pareto-optimality.  

Table 1: Optimal topologies and compliances for experiment-1. 

 0.9v =  0.8v =  0.7v =  0.6v =  0.5v =  
Proposed 
Method 

J=40.8 
 

J=44 
 

J=48.96 
 

J=55.3 
 

J=68 
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SIMP: 
Restart 
and 
continuous 

J=40.64 
 

J=44 
 

J=49.0 
 

J=56.1 
 

J=66.3 

 The figure below captures the number of cumulative FEA runs (the most dominating cost) for the three 

strategies, as a function of the volume fraction removed. 

 

Figure 9: Number of cumulative FEA runs as a function of the volume fraction removed. 

 Observe that the number of FEA runs to achieve a given volume fraction for the proposed method is 

significantly smaller than that of either SIMP strategies. Thus, one can generate the entire set of pareto-optimal 

topologies with 62 FEA runs as illustrated, SIMP-restart takes 628 FEA runs, and SIMP-continuous takes 353 

runs. 

 The figure below illustrates the pareto-optimal curve as generated by the proposed and the SIMP methods. 
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Figure 10: The pareto-optimal curve for the cantilevered beam problem. 

 We will now vary some of the parameters and study their impact. For example, the figure below compares the 

pareto-optimal curve for various mesh densities, namely (40,20), (60,30) (default), and (80,40); all other 

parameters being identical to the default parameters. Not surprisingly, finer density meshes yield lower pareto-

optimal curves, and topologies with more ‘holes’.  

 

Figure 11: The pareto-optimal curves for the cantilevered beam problem for various mesh sizes. 

 Next we consider two additional volume step-sizes 0.025v∆ =  and 0.05v∆ = , and compare the pareto-optimal 

curves against the default 0.05v∆ = ; all other parameters being identical. Since the curves in Figure 12 are almost 

identical, we have not identified them; the topologies were also identical. 

 

Figure 12: The pareto-optimal curves for the cantilevered beam problem for various volume step-sizes. 

 Finally, the pareto-optimal curve was found to be relatively insensitive to the filter radius (ranging from 0.5 to 

2.0). But, for lower filter radius, topologies with larger number of holes were generated, as expected. 

5.2 Beam with Tip Load 

 The next set of experiments is on the beam problem posed below with material parameters, etc. as before. 
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Figure 13: Experiment-2 

The table below compares the results from the proposed method and SIMP for various volume fractions. Once 

again, there are minor differences between the topologies generated by the two methods, but the compliances are 

almost identical, confirming that we have achieved pareto-optimality. 

Table 2: Optimal topologies and compliances for experiment-2 

 0.9v =  0.8v =  0.7v =  0.6v =  0.5v =  
Proposed 
Method 

 

J=46.3 
 

J=49.8 
 

J=54.3 
 

J=61.8 
 

J=73.1 

SIMP: 
Restart 
and 
continuous  

J=46.2 
 

J=49.6 

 
J=54.8 

 

J=62.2 
 

J=73 

 
 The figure below captures the number of cumulative FEA runs (the most dominating cost) for the three 

strategies, as a function of the volume fraction removed. 

 

Figure 14: Number of cumulative FEA runs as a function of the volume fraction removed. 
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 Observe that, once again, the number of FEA runs to achieve a given volume fraction for the proposed method is 

significantly smaller than that of either SIMP strategies. One can generate the entire set of pareto-optimal 

topologies with 75 FEA runs via the proposed method, while SIMP-continuous requires 250 FEA runs. The figure 

below illustrates the pareto-optimal curve as generated by the proposed and the SIMP methods. 

 

Figure 15: The pareto-optimal curve for experiment-2. 

5.3 Multi-load Pareto Optimal Topologies 

 The theory presented in section 4 is verified through the next set of experiments. Consider the two-objective 

problem in Equation (4.1), where the objectives are the two compliances associated with the two load cases 

illustrated in Figure 7. The tables below illustrate various topologies obtained for various weight combinations, for 

different volume fractions. 

Table 3: Optimal topologies for 
0

0.75v =  

 

1 2
0.2; 0.8w w= =  

1 2
0.4; 0.6w w= =  

1 2
0.5; 0.5w w= =  

1 2
0.6; 0.4w w= =  

1 2
0.8; 0.2w w= =  

 
J1=52.4; J2=52.2 

 
J1=49.6; J2=52.3 

 

 
J1=48.9; J2=52.9 

 

 
J1=47.9; J2=54.6 

 

 
J1=47.1; J2=64.0 

 

 

Table 4: Optimal topologies for 
0

0.6v =  

 

1 2
0.2; 0.8w w= =  

1 2
0.4; 0.6w w= =  

1 2
0.5; 0.5w w= =  

1 2
0.6; 0.4w w= =  

1 2
0.8; 0.2w w= =  
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J1=70.0; J2=62.6 

 
J1=76.9; J2=62.7 

 

 
J1=63.6; J2=62.9 

 

 
J1=62.3; J2=63.3 

 

 
J1=61.8; J2=69.2 

 

 
 

Figure 16 illustrates the pareto-optimal curve as generated by the proposed method in section 4 for volume 

fractions 0.75 and 0.6., where * 2J w J= . Further, the pareto-optimal curves for volume fraction 0.6 and the 

resulting topologies at 
1

0.8;w =  and 
2

0.2;w =  are illustrated in Figure 17  and Table 5.   

 

Figure 16: The pareto-optimal curves for two volume fractions. 
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Figure 17: The pareto-optimal curves for 
0

0.6v =  

 

Table 5: Resulting topologies for 
0

0.6v =  (
1 2

0.8, 0.2w w= = ) 

 
0.1w∆ =  0.2w∆ =  0.6w∆ =  

 
J1=61.8; J2=69.2 

#FEA =53 

 
J1=61.6; J2=67.4 

#FEA=41 

 
J1=60.4; J2=73.1 

#FEA=44 

 

From Figure 17  and Table 5 one can see that a larger step size can be used to reduce the computational cost 

without loss of accuracy. Note that #FEA iterations in Table 5 include the 35 iterations needed to converge to the 

desired volume fraction (domain initialization in Algorithm 3). 

5.4 Tip-loaded 3-D Beam 

The proposed method can be easily extended to 3-D topology optimization. The topological sensitivity 

expression for 3-D plane stress problems, with respect to material subtraction is given by [46]  

 ( ) 20 : (3 2 ) ( ) ( )S p tr trµσ ε λ µ σ ε= − − −T �  (5.1) 

where µ   and λ   are the Lamé coefficients. For material addition we used the same expression, but with a 

negative sign. 

The experiment in section 5.2 is repeated here in 3-D with the following parameters and modifications.  
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• The problem is illustrated in Figure 18 with 48,w =  8,d =  and carrying a unit-load F . 

• The domain D  is discretized into unit linear hexahedral elements. 

• We use a Gaussian filter of radius 1.0 to smoothen the topological sensitivity field. 

• For comparison with the SIMP method, we extend the Matlab code described in [4] to 3-D with same 

discretization parameters.  

 

Figure 18: The 3-D tip loaded beam. 

The resulting 3-D topologies at 0.5v =  for the proposed and the SIMP methods are shown in Figure 19.  

 
 

Figure 19: Optimal topologies for a volume fraction 0.5v =  (a) proposed method (b) SIMP. 

Table 6 compares the results from the proposed method and SIMP for various volume fractions. Once again, there 

are minor differences between the topologies generated by the two methods, but the pareto-optimality was 

achieved. 

Table 6: Optimal topologies for the tip-loaded 3-D beam 

 
 0.9v =  0.8v =  0.7v =  0.6v =  0.5v =  
Proposed 
Method 

 

J=8.53 
 

J=8.79 
 

J=9.20 
 

J=9.81 

 

J=10.76 



Turevsky, I., Suresh, K., “Efficient Generation of Pareto-Optimal Topologies for Compliance Optimization,” 
International Journal of Numerical Methods in Engineering, Volume 87, Issue 12, pages 1207–1228, 2011 
 

SIMP: 
(Restart 
& 
Continuo
us) 

 
J=8.60 

 
J=8.91 J=9.36 

 
J=10.00 J=10.99 

 

As before the proposed method proves to be superior to SIMP. The figure below captures the number of 

cumulative FEA runs (the most dominating cost) for the three strategies, as a function of the volume fraction 

removed. 

Observe that, once again, the number of FEA runs to achieve a given volume fraction for the proposed method 

is significantly smaller than that of either SIMP strategies. One can generate the entire set of pareto-optimal 

topologies with 134 FEA runs via the proposed method, while SIMP-continuous requires 705 FEA runs.  

 

Figure 20: Number of cumulative FEA runs as a function of the volume fraction removed. 
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Figure 21 illustrates the pareto-optimal curve as generated by the proposed and the SIMP methods. 

 

Figure 21: The pareto-optimal curve for the tip-loaded 3-D beam. 

Next we explore the impact of changing the volume step size on the results.  The pareto-optimal curve 

with 0.025v∆ = , 0.05v∆ = , and 0.1v∆ =  is illustrated in Figure 22. 

 

Figure 22: The pareto-optimal curves for the cantilevered beam problem for various volume step-sizes. 

5.5 Cube under four point load 

We emphasize the applicability of the proposed method in 3-D topology optimization with a more complex 

numerical example. The boundary conditions for the example are illustrated in Figure 23.  The structure Ω  is to 

be fixed on the four bottom corners, and must carry four unit-loads positioned symmetrically as shown. The 

material properties are E = 1, and 0.3ν = ; the dimension d  is set to 24.  
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Figure 23: Cube subjected to four point loads.  

 

The final topology at 0.2v =  for the proposed method and SIMP, and the pareto-optimal curve generated by the 

proposed method are illustrated in Figure 24 and Figure 25 respectively.  

 

Figure 24: Optimal topologies for a volume fraction 0.2v = : (a) proposed method (b) SIMP. 

 

Figure 25: The pareto-optimal curve for the cube with 4 point loads. 
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6. CONCLUSIONS 

 The two most significant contributions of the paper are: (1) a theoretical framework for determining if a 

topology is locally pareto-optimal through an intrinsic test, and (2) an efficient algorithm for tracing pareto-

optimal curves for compliance-related objectives. Future work will focus on: (a) non-compliance objectives since 

the topological sensitivity concept is well defined for a large class of problems, (b) higher dimension Pareto fronts, 

and (c) further improving the efficiency of the proposed algorithms. 
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