
Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

A 199-line Matlab Code for Pareto-Optimal Tracing in Topology Optimization
Krishnan Suresh

University of Wisconsin, Madison

Abstract

 The paper ‘A 99-line topology optimization code written
in Matlab’ by Sigmund (Structural and Multidisciplinary
Optimization, 2001, 21) demonstrated that SIMP-based
topology optimization can be easily implemented in less
than hundred lines of Matlab code. The published method
and code has been used even since by numerous researchers
to advance the field of topology optimization.

 Inspired by the above paper, we demonstrate here that, by
exploiting the notion of topological-sensitivity (an alternate
to SIMP), one can generate pareto-optimal topologies in
about twice the number of lines of Matlab code. In other
words, optimal topologies for various volume fractions can
be generated in a highly efficient manner, by directly tracing
the pareto-optimal curve.

1. INTRODUCTION1

 Topology optimization is now a well established field.
Indeed, numerous topology optimization methods such as
homogenization [1], SIMP [2-4] and level-set [5-7], now
exist. If a well-defined objective can be articulated, such
methods can systematically generate insightful designs for
complex engineering problems.

 In this paper, we discuss a new and robust topology
optimization method for multi-objective problems, based on
the concept of topological sensitivity [8-16]. A salient
feature of the proposed method is that, for compliance
problems, one can trace the pareto-optimal frontier (see
Figure 1) in a computationally efficient manner. In other
words, the method can find pareto-optimal topologies [17]
for various volume fractions with far fewer finite element
analysis than classic SIMP methods.

Figure 1: Pareto-optimal points, and pareto-frontier.

 The remainder of the paper is organized as follows. In
Section 2, multi-objective topology optimization is briefly
reviewed. In Section 3, we introduce the notion of local
pareto-optimality, review topological sensitivity, and finally
establish fundamental results on pareto-optimal designs,
and an associated algorithm. Then, in Section 4, the Matlab
code (see Appendix) for generating pareto-optimal designs
is explained. In Section 5, numerical results are presented,
followed by conclusions and open issues in Section 6.

2. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION

1 A preliminary version of this work will be presented at the 2010
ASME IDETC/CIE conference in Montreal, Canada.

 There is significant amount of literature on topology
optimization (for example, see review papers [18-21]), and
multi-objective optimization [17, 22-25]. We focus here on
the intersection of the two disciplines, specifically on
topology optimization problems of the type:

 { },
D

Min J
Ω⊂

Ω (2.1)

where (see Figure 2, for example):

: Compliance

: Geometry/topology to be computed

: Region within which the geometry must lie

J

D

Ω (2.2)

It is implicitly assumed that, for any structure DΩ ⊆ , the

displacement must satisfy the elasticity equation [26].

Figure 2: A structural problem on the domain D .

 The objective is to find pareto-optimal topologies [17] for
Equation (2.1). In the present context, a topology Ω is

‘pareto-optimal’ if no other topology ′Ω exists with smaller
compliance and identical volume.

2.1 Review of Methods

 One approach to solving Equation (2.1) is to transform it
into a series of single-objective optimization problems:

0

D
Min J

v

Ω⊂

Ω =
 (2.3)

where the volume is fixed at some desired value, and
Equation (2.3) is solved to yield an optimal topology. Then,
the volume desired is modified, and a fresh optimization
problem is solved. This strategy is easy to implement, but
can be computationally prohibitive since each ‘run’ of
topology optimization entails numerous finite element
analysis (FEA), and is therefore expensive.

 An alternate approach to solving Equation (2.1) is
through weighted optimization where the problem is
transformed as follows:

1 2

D
Minw J w
Ω⊂

+ Ω (2.4)

where the weights are prescribed a priori. By appropriately
choosing the weights, a set of pareto-optimal designs may
be obtained. This method has two inherent limitations: (1)
not all pareto-optimal designs can be obtained via suitable
weighting, and (2) finding suitable weights is non-trivial
[23, 24, 27].
 A variation is the ‘compromise formulation’ wherein the
weights are supplemented by min and max for each
objective function [28]. Yet another variation is the physical
programming method where other aspects of the objectives,
for example: the range within which it must lie, etc, are

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

taken into account in the formulation [29]. Further, for
specific applications, example: compliant mechanisms,
other weighted-optimization methods have also been
successfully implemented [30].
 However, the most successful methods today for multi-
objective optimization are based on the non-dominated
evolutionary or genetic algorithms [22, 31-33].
 The underlying principle behind this class of methods
(there are numerous variations) is as follows. First, one
generates a population of designs. Then, through stochastic
methods, typically via genetic coding and mutation, some of
the designs are modified. Non-pareto-designs are then
eliminated, and the cycle is repeated. Specific examples of
such methods for multi-objective topology optimization are
reviewed below.
 In [31], the authors deal with multi-objective topology
optimum design, where the two objectives are minimization
of volume and maximum displacement under given loading.
Multi-objective evolutionary algorithms are used with
Voronoi diagrams serving as a geometric representation.
 In [34], the two objectives considered in topology
optimization are the minimization of compliance, and
maximization of the first eigen-value, with the amount of
material to be used serving as a constraint. An additional
parameter of penalty-timing is also considered.
 While many of the methods are capable of generating
pareto-optimal topologies, a common drawback is that they
require numerous FEA-runs, and are therefore
computationally prohibitive.

3. PROPOSED METHOD

 The objective here is to develop a simple and efficient
method to directly trace the pareto-frontier for the two-
objective topology optimization problem in Equation (2.1).
 The proposed method rests on: (1) the notion of local
pareto-optimality discussed in Section 3.1, (2) topological
sensitivity, reviewed in Section 3.2, and (3) pareto-
optimality criteria stated and proved in Section 3.3. The
method has been inspired by the pioneering work reported
in [35, 36].

3.1 Local Pareto-Optimality

 Since our objective is to trace the pareto-optimal curve,
i.e., to move from pareto-optimal point to the next, we
define in this Section the notion of “local pareto-optimality”,
by first defining the distance between 2 topologies.

Definition 1: Topologies Ω and 'Ω are utmost δ -apart if

their symmetric volume difference is less than or equal to δ :

 (, ') (') (')V δ∆ Ω Ω = Ω −Ω + Ω −Ω ≤ (3.1)

 ♦

For example, consider the topology in Figure 3.

Figure 3: A given topology Ω .

 Figure 4 illustrates topologies that are δ -apart from

Figure 3, where δ denotes the volume of a small disc,

shown in Figure 4. Thus, nearby-topologies can be
constructed by: (a) subtracting or adding a single volume of

δ , (b) subtracting or adding 2 volumes of / 2δ , (c)

subtracting and adding a volume of / 2δ , (d)

subtracting/adding multiple volumes of / Nδ , such that

Equation (3.1) is satisfied.

Figure 4: Topologies ′Ω that areδ -apart from Figure 3c.

 With this notion of nearby-topologies, we now define
‘local’ pareto-optimality as follows.

Definition 2: A topology Ω is said to be locally pareto-
optimal if it is pareto-optimal with respect to all topologies

that are within a distance δ apart from it, where δ is

sufficiently small. ♦

 This definition plays a crucial role in determining if a
particular topology is pareto-optimal. In the next section,
we provide necessary and sufficient conditions for a
topology to be locally pareto-optimal. But, first we review
the second concept of topological sensitivity (a.k.a.
topological derivative).

3.2. Topological Sensitivity: A Review

 The notion of topological derivative has its roots in the
seminal paper by Eschenauer, et. al. [15]; this concept has
been later explored by numerous authors, for example in [8-
15, 35]. The classic topological sensitivity deals with the
sensitivity of field problems to subtraction of infinitesimal
but arbitrary shaped features [13]. However, in this paper,
we shall restrict ourselves to subtraction of discs in 2-D,
spheres in 3-D. Further, we assume that the discs/spheres
lie in the interior of the domain (see [37, 38] for a treatment
of boundary insertion/perturbation). For such shapes,
topological sensitivity captures the first order impact of
inserting a small circular hole within a domain on various
quantities of interest [8-14, 39].

 For the compliance J , the topological sensitivity field, for

a 2-D plane-stress problem, is given by [40]:

2

4 1 3
() : () ()

1 1

S p tr tr
ν

σ ε σ ε
ν ν

−
= −

+ −
T � (3.2)

It states that, once the stress and strain are determined for a
given structural problem, the change in compliance due to

insertion of a hole of area δ at any point p is given by:

 () ()
S

J p oδ δ∆ = +T (3.3)

where, by definition:

0

()
lim 0
o

δ

δ
δ→

→ (3.4)

In parallel, one can also consider the case of material
addition and its impact on the compliance. In particular, let
the region D −Ω be modeled using a soft-material 1Eε � .

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

 Then, one can show that the topological sensitivity, for a
2-D plane-stress problem, with respect to addition is given
by [41]:

4 1 3

() : () ()
3 (1)(3)

A q tr tr
ν

σ ε σ ε
ν ν ν

−
= − −

− + −
T � (3.5)

It captures the first order impact of adding a small circular
material in the soft-region on the compliance. Note that

stresses & strains are related through E in Equation (3.2),
and through Eε in Equation (3.5).

 The two fields &S A
T T are, in general, discontinuous at

the boundary of Ω . For convenience, one can combine the
two into a single (discontinuous) topological sensitivity
field T over the entire domain per:

() if

()
() if

 ∈Ω
= 

− ∈ −Ω

S

A

r r
r

r r D

T
T

T
 (3.6)

For compliance problems, since subtracting (or adding)
material never decreases (or increases) the compliance:

 () 0 (), ,≥ ≥ ∀ ∈Ω ∀ ∈ −ΩS A
p q p q DT T (3.7)

it follows that 0≥T � .

3.3 Pareto-Optimality Criteria

 Consider now the multi-objective problem stated earlier
in Equation (2.1). Various pareto-optimal solutions exist for

Ω , for the example illustrated in Figure 2. For example, the

special case of DΩ = is illustrated in Figure 5, i.e., where
the structure occupies the entire space provided. This is a
pareto-optimal design since it is impossible to find a
structure of lower compliance, and identical volume.

39; 1.0J v= =

Figure 5: A pareto-optimal topology of volume 1.

 On the other hand, consider the structures illustrated in
Figure 6; the compliances and volumes are also provided.
Are these topologies pareto-optimal with respect to the
objectives in Equation (2.1)? This question cannot be
answered today without either computing the pareto-
optimal frontier or searching for ‘better’ designs.

(a) 162; 0.3;J v= = (b) 66; 0.5;J v= = (c) 56; 0.65;J v= =

Figure 6: Are these topologies pareto-optimal with respect
to Equation (2.1)?

 The lack of an ‘inherent’ test to determine pareto-
optimality of topologies is a serious short-coming. We now
address this through an important claim on local pareto-
optimality by combining the definitions of the above two
Sections.

Lemma 1: A necessary condition for a domain Ω to be
locally pareto-optimal with respect to Equation (2.1) is that
its topological sensitivity fields must satisfy the inequality:

 min() min() 0
S A+ ≥T T (3.8)

Proof: Let 'Ω be a nearby topology with identical volume

at a distance of δ from it, i.e., 'Ω is constructed from Ω by

subtracting M discs of areas 0S

i
δ > , and adding N discs of

areas 0A

i
δ > , i.e.,

1 1

' \ () ()S A
i j

M N

i j

i j

B p B q
δ δ

= =

Ω = Ω ∪∑ ∑ (3.9)

such that:

1 1

/ 2δ δ δ
= =

= =∑ ∑
M N

S A

i j

i j

 (3.10)

Note that the change in compliance is:

1 1

() () ()δ δ δ
= =

∆ = + +∑ ∑
M N

S S A A

i i j j

i j

J p q oT T (3.11)

 If Ω is locally pareto-optimal, 'Ω cannot have a lower
compliance implying:

1 1

() () () 0, , , ,δ δ δ δ δ
= =

∆ = + + ≥ ∀∑ ∑
M N

S S A A S A

i i j j i j i j

i j

J p q o p qT T (3.12)

Considering Equation (3.7), as a particular choice subtract

material of volume / 2δ at a location where S
T takes a

minimum, and add material of volume / 2δ at a location

where A
T also takes a minimum, i.e.,

 min() / 2 min() / 2 () 0S AJ oδ δ δ∆ = + + ≥T T (3.13)

In the limit of 0δ → , from Equation (3.4)

 min() min() 0S A+ ≥T T (3.14)

♦

 Thus, to determine if a topology Ω satisfies the necessary
condition to be locally pareto-optimal, one must:

1. Solve the elasticity problem for , &u ε σ over D

2. Compute the topological sensitivity fields per Equations
(3.2) and (3.5).

3. Check if Equation (3.8) is satisfied.

Indeed, from the above inherent test, one can easily
determine that the topologies in Figure 6a and Figure 6c are
not locally pareto-optimal. However, the topology in Figure
6b indeed satisfies the necessary condition for local pareto-
optimality. In theory, second order checks are necessary to
ensure local minimum. However, in practice, we found that
the algorithms based on the above Lemma, trace the local
minima.

 From the above Lemma we have the following Corollary.

Corollary: If Ω is pareto-optimal, there exists a scalar l

such that

 () (), ,≥ ≥ − ∀ ∈Ω ∀ ∈ −ΩS Ap l q p q DT T (3.15)

Proof: From Equation (3.8), we have:

 min() min() max()≥ − = −S A A
T T T (3.16)

i.e.,

() min() max() ()

,

≥ ≥ − ≥ −

∀ ∈Ω ∀ ∈ −Ω

S S A Ap q

p q D

T T T T
 (3.17)

Thus Equation (3.15) follows.

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

♦

Without a loss of generality, if we assume min()> S
l T , then

it follows from the above corollary and Equation (3.6) that a
pareto-optimal domain satisfies the inverse relationship:

 { }| ()Ω = >r r lT (3.18)

This inverse relationship will be exploited in the algorithm
below.

 Observe that the scalar l in Equation (3.15) is not

uniquely defined since the two fields & −S A
T T are not

necessarily continuous across the boundary ∂Ω .

 However, in the algorithm below, we apply a filter on the
topological sensitivity fields in order to eliminate the
‘checker-field’ effect (similar to the filtering applied on the
density in SIMP); this renders the two topological fields to
be continuous. We then relax the constraint in Equation
(3.15), and impose the volume constraint:

 Ω = v (3.19)

In other words, the scalar l is determined such that the

filtered topological sensitivity field *
T satisfies

 { }*| () > =r r l vT (3.20)

The scalar l is now uniquely determined with the following

exception: if there are two topologies that are equally
optimal, then the algorithm may oscillate. Thus, in practice,
one must detect and break such oscillation cycles. These
implementation details are discussed further under Table 2
in Section 4.

3.4 Pareto-Frontier Tracing Algorithm

 We now apply the above set of results to arrive at an
algorithm for tracing pareto-optimal topologies. In

particular, let Ω be a locally pareto-optimal topology. The
objective is to compute a nearby pareto-optimal topology
′Ω whose volume is less than that of Ω by v∆ , i.e.,

 v′Ω = Ω − ∆ (3.21)

We rely on a fixed-iteration scheme similar to the ones
discussed in [35, 36] in that: (1) given a domain Ω one can

compute its topological field T via Equation (3.6), and (2)
given a valid topological field T , one can compute the
corresponding Ω via Equation (3.18). Further, by imposing
Equation (3.8) for local pareto-optimality, we arrive at the
following algorithm.

()
{ }
{ }

min ma

: A pareto-optimal topology , step size

: A near-by pareto-optimal topology

 such that :

Do

 , ()

 | ()

 | ()

While (

Ω ∆

′Ω

′Ω = Ω − ∆

′← Ω − ∆

′Ω ←Ω

′≡ ← Ω

′← > =

′Ω ← >

<

S A

S

Given v

Find

v

v v

l r r l v

r r l

T T T T�

T

T

T T
x min min
) | (0)+ <A S A
T T

Algorithm 1: Finding a pareto-optimal topology with

volume decrement of v∆ .

 The existence of the parameter l in the above algorithm

hinges on the existence of a pareto-optimal domain ′Ω

satisfying Equation (3.21). If ′Ω exists, then its topological
sensitivity pair exists and can be computed. Since this pair

satisfies Equation (3.7), there exists an l satisfying:

 S Al> >T T (3.22)

Existence does not imply uniqueness or that the algorithm

will converge to the correct value of l ! Indeed, if a very

large step-size is taken for v∆ , the algorithm may never

converge. In practice, 0.1v∆ ≤ is recommended.

 To further optimize the step-size v∆ , one can estimate

the change in compliance at each step. Further, since the

DΩ = is pareto-optimal, we have the following algorithm to
trace the pareto-optimal curve.

()

max max

()

()

() () () ()

() ()

,

()

max max ,

(1) ()

: A domain , ,

: The pareto-optimal curve for (,)

0

Do

 , ()

 min()

 min(, /)

 Algorithm-1(,

i

i

i i S i A i

i i S

v

i

v

i i

Given D v J

Find J v

i

D

v D

J

v v J J

v+

∆ ∆

←

Ω←

←

≡ ← Ω

← −

∆ ← ∆ ∆

Ω← Ω ∆

T T T T�

T

(1) ()

()

)

 1

While (0)

i i

i

v v v

i i

v

+ ← − ∆

← +

>

Algorithm 2: Tracing the pareto-optimal curve.

 The strength and weakness of the proposed algorithm is
that it moves from one local minimum to the next closest
local minimum (with a new set of volume constraints) on
the pareto-optimal curve. By exploiting the closeness of
locally pareto-optimal solutions (as defined in the paper),
the computational expense of pareto-tracing is reduced
dramatically, as demonstrated via numerical experiments.
The short-coming is that a ‘far away’ and alternate pareto-
optimal solution cannot be detected via the proposed
method.

4. MATLAB CODE

 For convenience, the Matlab code for the above algorithm
is listed in the Appendix; it can also be downloaded from the
Matlab file exchange website (www.mathworks.com/
matlabcentral/fileexchange/). The finite element
assumptions, syntax and conventions closely follow those of
Sigmund [4]. The input parameters are summarized in
Table 1 below. The user can run the code with the default
parameters via the Matlab call ParetoOptimalTracing;

Table 1: Description of input parameters
 Description Default

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

nely The number of quad elements
in the vertical direction.

30

nely The number of quad elements
in the horizontal direction.

60

desVolF
rac

The final volume fraction
desired (0.1 to 1.0).

0.5

problem Choose between the two
topology optimization problems
(see experiments below).
Additional problems can be
modeled via appropriate
boundary conditions [4].

1

volDecr
Max

The maximum volume

decrement v∆ allowed during

pareto-tracing.

0.05

JIncMac The maximum compliance

decrement J∆ allowed during

pareto-tracing.

3.0

filterR
adius

This is used for smoothening
the topological sensitivity field,
similar to the use of filters in
SIMP [4].

0.8

 A brief explanation of the Matlab code is given in the
following table. The reader is also encouraged to study the
conventions in [4].

Table 2: Description of the Matlab code.
Lines Description

1-16 Function call with default parameters

17-26 We carry out a FEA for the full domain, and
compute the filtered topological sensitivity
field. Gaussian filters work the best; other
filters may however be used.

27-31 Check if the final volume fraction has been
reached; if not, decrement volume fraction.

32 Terminate after 10 fixed-point iterations to
avoid oscillation/ cycles. In almost all
experiments, the iteration converged in
6~8 iterations.

34-37 If the current topology is pareto-optimal,
terminate fixed-point iteration.

39 Compute the contour value of a ‘nearby’
topology with desired volume.

40-42 Eliminate quad elements that do not lie
within the above topology.

43-47 Carry out a FEA over current topology; also
compute filtered topological sensitivity.

48 After a pareto-optimal topology has been
determined, compute its compliance.

49-52 Extract optimal topology and plot.

53-54 Determine the next volume decrement.

56-57 Final plot of pareto-optimal curve.

58-97 FEA code; see [4].

98-127 A function to compute the topological
sensitivity fields for elements inside and
outside; see Equations (3.2) and (3.5).

128-141 Compliance computation; see [4].

142-166 Given a pair of topological sensitivity fields,
and a desired volume fraction, compute the
appropriate level-set value. A binary search
is used to find the level-set value. Extra
rows and columns are added around the
field to obtain closed-contours.

167-179 For a given buffered-field (see above), and
a level-set value, find the area enclosed.

180-192 Implementation of Equations (3.7) & (3.8)

193-199 A function for plotting the contour /
topology.

5. NUMERICAL EXPERIMENTS

 In this Section, we illustrate the above algorithm
through numerical experiments, using the default
parameters, unless otherwise stated. For all experiments,

the domain D is discretized into (60,30) linear quad
elements.

 For SIMP, we use the Matlab code described in [4] with
the following parameters:

• For each volume fraction v , we determine the optimal

topology by minimizing compliance (i.e., single
objective minimization).

• We use a filtering radius of 1.5 to smoothen the
sensitivity field and use a penalty of 3.0 for density.

• The termination criteria is when the density change is
less than 0.01 [4].

In addition, to trace the pareto-optimal curve via SIMP, we
use two strategies:

1. SIMP-restart: Here, for each volume fraction, the
density is initialized to a uniform density of specified
volume fraction.

2. SIMP-continuous: Here, for each volume fraction,
the density is initialized to the termination density of
optimal topology of the previous volume fraction.

In the proposed method and the two strategies of SIMP, the
most dominating cost is finite element analysis (FEA).
Therefore, in the experiments below, we note the number of
FEA runs required to reach an optimal topology, for a given
volume fraction, via the proposed algorithm, and via single-
objective SIMP-restart & SIMP-continuous.
5.1 Problem-1

 The first set of experiments is on the classic cantilevered

beam-problem posed below. We assume that Ω must lie

within a space D , illustrated in Figure 7 of unit volume, and
dimensions as shown. The structure Ω is to be fixed on one

edge, and must carry a unit-load F on the other end as

illustrated; the material properties are E = 1, and 0.3ν = .

Figure 7: A cantilevered beam-problem

 The table below summarizes the compliances for various
volume fractions. For each volume fraction, we provide the

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

compliance as predicted by the proposed method, and that
from SIMP-restart (SIMP-continuous yielded almost
identical result, and are therefore not included). There are
minor differences between the topologies generated by the
two methods, but the compliances are almost identical,
confirming that we have achieved pareto-optimality.

Table 3: Optimal topologies and compliances for Figure 7.
 Proposed Method SIMP (restart

and continuous)

0.9v =

J=40.8

J=40.64

0.8v =

J=44

J=44

0.7v =

J=48.96

J=48.98

0.6v =

J=55.3

J=56.1

0.5v =

J=68

J=66.3

 The figure below captures the number of cumulative FEA
runs (the most dominating cost) for the three strategies, as a
function of the volume fraction removed.

Figure 8: Number of cumulative FEA runs as a function of
the volume fraction removed.

 Observe that the number of FEA runs to achieve a given
volume fraction for the proposed method is significantly
smaller than that of either SIMP strategies. Thus, one can
generate the entire set of pareto-optimal topologies with 62

FEA runs as illustrated, SIMP-restart takes 628 FEA runs,
and SIMP-continuous takes 353 runs.

 The figure below illustrates the pareto-optimal curve as
generated by the proposed method.

Figure 9: The pareto-optimal curve for the cantilevered
beam problem.

 We will now vary some of the parameters and study their
impact. For example, the figure below compares the pareto-
optimal curve for various mesh densities, namely (40,20),
(60,30) (default), and (80,40); all other parameters being
identical to the default parameters. Not surprisingly, finer
density meshes yield lower pareto-optimal curves, and
topologies with more ‘holes’.

Figure 10: The pareto-optimal curves for the cantilevered
beam problem for various mesh sizes.

 Next we consider three volume step-sizes 0.025v∆ = ,

0.05v∆ = (default), and 0.025v∆ = , and compare the

pareto-optimal curves; all other parameters being identical.
Since the curves in Figure 11 are almost identical, we have
not identified them; the topologies were also identical.

Figure 11: The pareto-optimal curves for the cantilevered
beam problem for various volume step-sizes.

 Finally, the pareto-optimal curve was found to be
relatively insensitive to the filter radius (ranging from 0.5 to
2.0). But, for lower filter radius, topologies with larger
number of holes were generated, as expected.

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

5.2 Problem-2

 The next set of experiments is on the beam problem
posed below with material parameters, etc. as before.

Figure 12: Problem-2

The table below compares the results from the proposed
method and SIMP-restart for various volume fractions.
Once again, there are minor differences between the
topologies generated by the two methods, but the
compliances are almost identical, confirming that we have
achieved pareto-optimality.

Table 4: Optimal topologies and compliances.
 Proposed Method SIMP (restart

and continuous)

0.9v =

J=46.33

J=46.22

0.8v =

J=49.8

J=49.6

0.7v =

J=54.3

J=54.8

0.6v =

J=61.77

J=62.2

0.5v =

J=73.13

J=73.1

 The figure below captures the number of cumulative FEA
runs (the most dominating cost) for the three strategies, as a
function of the volume fraction removed.

Figure 13: Number of cumulative FEA runs as a function of
the volume fraction removed.

 Observe that, once again, the number of FEA runs to
achieve a given volume fraction for the proposed method is
significantly smaller than that of either SIMP strategies.

 One can generate the entire set of pareto-optimal
topologies with 75 FEA runs via the proposed method, while
SIMP-continuous requires 250 FEA runs. The figure below
illustrates the pareto-optimal curve as generated by the
proposed method.

Figure 14: The pareto-optimal curve.

6. CONCLUSIONS

 The three most significant contributions of the paper are:
(1) a theoretical framework for determining if a topology
satisfies the necessary condition for local pareto-optimality,
(2) an efficient algorithm for tracing pareto-optimal curves
for compliance-related objectives, and (3) a compact Matlab
code for generating pareto-optimal topologies.

 Future work will focus on: (a) non-compliance objectives
since the topological sensitivity concept is well defined for a
large class of problems, (b) further improving the efficiency
of the proposed algorithm, and (c) considering arbitrary
shaped features (rather than uniform discs and spheres) for
the topological sensitivity field.

6. REFERENCES

1. Bendsøe, M.P., Kikuchi, N, Generating optimal
topologies in optimal design using a homogenization
method. Computer Methods in Applied Mechanics and
Engineering, 1988. 71: p. 197–224.

2. Bendsøe, M.P., Optimal shape design as a material
distribution problem. Structural Optimization, 1989.
1(193-202).

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

3. Zhou, M., Rozvany, G.I.N., The COC algorithm, part II:
Topological, geometry and generalized shape
optimization. Computer Methods in Applied Mechanics
and Engineering, 1991. 89: p. 197-224.

4. Sigmund, O., A 99 line topology optimization code
written in Matlab. Structural and Multidisciplinary
Optimization, 2001. 21(2): p. 120-127.

5. Allaire, G., Jouve, F., Toader, A., Structural
Optimization using Sensitivity Analysis and a Level-
set Method. Journal of Computational Physics, 2004.
194(1): p. 363-393.

6. Burger, M., Hackl, B., Ring, W., Incorporating
Topological Derivatives into Level Set Methods.
Journal of Computational Physics, 2004. 194(1): p.
344-362.

7. Wang, M.Y., Wang, X., Guo, D., A level set method for
structural topology optimization. Computer Methods
in Applied Mechanics and Engineering, 2003. 192: p.
227-246.

8. Feijóo, R.A., Novotny, A. A., Taroco, E., Padra, C., The
Topological Derivative for the Poisson's Problem.
Mathematical Models and Methods in Applied
Sciences, 2003. 13(12): p. 1825-1844.

9. Novotny, A.A., Feijóo, R. A., Taroco, E., Padra, C.,
Topological-Shape Sensitivity Analysis. Computer
Methods in Applied Mechanics and Engineering, 2003.
192(7): p. 803-829.

10. Novotny, A.A., Feijóo, R. A., Taroco, E., Padra, C.
Topological Sensitivity Analysis for Three-dimensional
Linear Elasticity Problem. in 6th World Congress on
Structural and Multidisciplinary Optimization. 2005.
Rio de Janeiro.

11. Novotny, A.A., Feijóo, R. A., Taroco, E., Padra, C.,
Topological-Shape Sensitivity Method: Theory and
Applications. Solid Mechanics and its Applications,
2006. 137: p. 469-478.

12. Belytschko, T., Xiao, S. P., Parimi, C., Topology
Optimization with Implicit Functions and
Regularization. International Journal for Numerical
Methods in Engineering, 2003. 57(8): p. 1177–1196.

13. Sokolowski, J., Zochowski, A., On Topological
Derivative in Shape Optimization. SIAM journal on
control and optimization, 1999. 37(4): p. 1251-1272.

14. Sokolowski, J., Zochowski, A., Optimality Conditions
for Simultaneous Topology and Shape Optimization.
SIAM journal on control and optimization, 2003.
42(4): p. 1198-1221.

15. Eschenauer, H.A., Kobelev, V. V., Schumacher, A,
Bubble method for topology and shape optimization of
structures. Structural Optimization, 1994. 8: p. 42-51.

16. Céa J., G., S., Guillaume, P., Masmoudi, M., The shape
and topological optimizations connection. Computer
Methods in Applied Mechanics and Engineering, 2000.
188: p. 713-726.

17. Cohon, J.L., Multiobjective programming and
planning. Vol. 140. 1978, London: Academic Press, Inc.

18. Eschenauer, H.A., Olhoff, N., Topology optimization of
continuum structures: A review. Applied Mechanics
Review, 2001. 54(4): p. 331-389.

19. Rozvany, G.I.N., Aims, scope, methods, history and
unified terminology of computer-aided topology
optimization in structural mechanics. Structural and
Multidisciplinary Optimization, 2001. 21(2): p. 90-108.

20. Papalambros, P.Y., The optimization paradigm in
engineering design: promises and challenges.
Computer-Aided Design, 2002. 34(12): p. 939-951.

21. Rozvany, G.I.N., Stress ratio and compliance based
methods in topology optimization – a critical review.
Structural and Multidisciplinary Optimization, 2001.
21(2): p. 109-119.

22. Deb, K., Multi-Objective Optimization Using
Evolutionary Algorithms. 2001, Chichester,: John
Wiley & Sons,.

23. Messac, A., Ismail-Yahaya, A., Required Relationship
Between Objective Function and Pareto Frontier
Orders: Practical Implications. AIAA JOURNAL, 2001.
39(11): p. 2168-2174.

24. Messac, A., Sundararaj, G.J., Tappeta, R.V., Renaud,
J.E., Ability of Objective Functions to Generate Points
on Non-Convex Pareto Frontiers. AIAA JOURNAL,
2000. 38(6): p. 1084-1091.

25. Zhang, W.H., Yang, H.C., Efficient gradient calculation
of the Pareto optimal curve in multicriteria
optimization. Structural and Multidisciplinary
Optimization, 2002. 23: p. 311–319.

26. Zienkiewicz, O.C., Taylor, R. L., The Finite Element
Method for Solid and Structural Mechanics. 6th ed.
2005: Elsevier.

27. Das, I., Dennis, J.E., A closer look at drawbacks of
minimizing weighted sums of objectives for Pareto set
generation in multicriteria optimization problems.
Structural Optimization, 1997. 14: p. 63-69.

28. Chen, T.Y., Wu, S-C, Multiobjective optimal topology
design of structures. Computational Mechanics, 1998.
21: p. 483-492.

29. Lin, J., Luo, Z., Tong, L., A new multi-objective
programming scheme for topology optimization of
compliant mechanisms. Structural and
Multidisciplinary Optimization, 2010. 30: p. 241–255.

30. Luo, Z., Chen, L. Yang, J., Zhang, Y., Abdel-Malek, K.,
Compliant mechanism design using multi-objective
topology optimization scheme of continuum
structures. Structural and Multidisciplinary
Optimization, 2005. 30: p. 142–154.

31. Hamda, H., Roudenko, O., Schoenauer, M. Application
of a multi-objective evolutionary algorithm to
topology optimum design. in Fifth International
Conference on Adaptive Computing in Design and
Manufacture. 2002.

32. Madeira, J.F.A., Rodrigues, H., Pina, H., Multi-
objective optimization of structures topology by
genetic algorithms. Advances in Engineering Software,
2005. 36: p. 21-28.

33. Padhye, N. Topology Optimization of Compliant
Mechanism using Multi-Objective Particle
SwarmOptimization. in GECCO’08, July 12–16. 2008.
Atlanta, Georgia, USA.: ACM.

34. Chen, T.-Y., Wu, S.-C., Multiobjective optimal topology
design of structures. Computational Mechanics, 2002.
21: p. 483-492.

35. Céa J, G., S, Guillaume, P, Masmoudi, M., The shape
and topological optimizations connection. Computer
Methods in Applied Mechanics and Engineering, 2000.
188: p. 713-726.

36. Norato, J.A., Bendsøe, M. P., Haber, R.B., Tortorelli,
D.A., A topological derivative method for topology
optimization. Structural and Multidisciplinary
Optimization, 2007. 33: p. 375–386.

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

37. Samet, B., The topological asymptotic with respect to a
singular boundary perturbation. Comptes Rendus
Mathematique, 2003. 336(12): p. 1033-1038.

38. Dambrine, M., Vial, G., Influence of a boundary
perforation on the Dirichlet energy. Control and
Cybernetics, 2005. 34(1): p. 117-136.

39. Gopalakrishnan, S.H., Suresh, K.,, Feature Sensitivity:
A Generalization of Topological Sensitivity. Finite
Elements in Analysis and Design, 2008. 44(11): p. 696-
704.

40. Feijóo, R.A., Novotny, A.A., Taroco,E., Padra, C., The
topological-shape sensitivity method in two-

dimensional linear elasticity topology design, in
Applications of Computational Mechanics in
Structures and Fluids, V.S. S.R. Idelsohn, Editor. 2005,
CIMNE.

41. Amstutz, S., Sensitivity analysis with respect to a local
perturbation of the material property. Asymptotic
Analysis, 2006. 49(1-2): p. 87-108.

Appendix: Matlab Code

1 function ParetoOptimalTracing(nelx,nely,desVolFrac,problem,volDecrMax,JIncMax,filterRadius)

2 % Generate pareto-optimal topologies via fixed point iteration

3 % Author: Krishnan Suresh; suresh@engr.wisc.edu

4 % Reference: "A 199-line Matlab Code for Pareto-Optimal Tracing in Topology Optimization",

5 % K. Suresh, Vol X, pp xy, Structural and Multidisciplinary Optimization,

6 % Acknowledgements: "A 99 line topology optimization code written in Matlab"

7 % by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,

8 % Vol 21, pp. 120--127.

9 if (nargin == 0) % default values

10 nelx = 60;nely = 30; % The grid size for topology optimization

11 desVolFrac = 0.5; % The final volume fraction desired

12 problem = 1; % 1 or 2 for cantilevered beam problems

13 volDecrMax = 0.05; % step-size for pareto-tracing

14 JIncMax = 3; % For steep change in pareto-curve, use additional constraint

15 filterRadius = 0.8; % Use for smoothening the topological sensitivity field

16 end

17 voidEps = 1e-4; % Relative Young's Modulus of void region

18 filter = fspecial('gaussian', [3 3],filterRadius); % smoothen topological sensitivity field

19 totalIter = 0;

20 elemsIn(1:nely,1:nelx) = 1; % intialize the domain

21 U = FE(nelx,nely,elemsIn,voidEps,problem); % Solve FEA problem

22 T = ComputeT(U,elemsIn,voidEps); % Compute topological sensitivity

23 T = filter2(filter,T); % smoothen the field

24 J(1) = computeCompliance(nelx,nely,elemsIn,voidEps,U); % compute & store compliance

25 volIndex = 1;volFractions(1) = 1; volfrac = 1; % initialization

26 volDecrement = volDecrMax; % current decrement of volume fraction

27 while (volfrac > desVolFrac)

28 volfrac = volfrac-volDecrement; % move to the next volume fraction

29 volIndex = volIndex+1;

30 volFractions(volIndex) = volfrac; % store the volume fraction

31 iter = 0;

32 while (iter < 10) % to avoid cycles; typically 10 iterations is sufficient

33 totalIter= totalIter+1;

34 [isValid,isParetoOptimal] = analyzeTopology(T,elemsIn);

35 if ((iter > 0)&&(isValid)&&(isParetoOptimal)) % done with current vol

36 break

37 end

38 % Find the level-set value such that the contour has given vol fraction

39 value = findContourValueWithVolumeFraction(T,volfrac);

40 [index] = find(T < value); % eliminate all elements less than this value

41 elemsIn(1:nely,1:nelx) = 1; % start with the full domain

42 elemsIn(ind2sub(size(T),index)) = 0; % remove elements

43 U = FE(nelx,nely,elemsIn,voidEps,problem); % FEA

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

44 T = ComputeT(U,elemsIn,voidEps); % Topological Sensitivity

45 T = filter2(filter,T); % Smoothen the field

46 iter= iter+1;

47 end

48 J(volIndex) = computeCompliance(nelx,nely,elemsIn,voidEps,U);

49 value = findContourValueWithVolumeFraction(T,volfrac); % as above

50 plotContour(T,value,figure(1));

51 title(['v=' num2str(volfrac) '; J = ' num2str(J(volIndex)) '; #FEA = ' num2str(totalIter)]);

52 pause(0.001);

53 dJ = J(volIndex)- J(volIndex-1);

54 volDecrement = max(volDecrement/5,min(volDecrement,JIncMax*volDecrement/dJ));

55 end

56 figure(2); plot(volFractions,J,volFractions,J,'*');

57 xlabel('Volume'); ylabel('Compliance'); grid on;

58 %%%

59 function [U]=FE(nelx,nely,elemsIn,voidEps,problem)

60 if (problem == 1) % Cantilevered beam;

61 fixeddofs = 1:2*(nely+1); % left edge

62 forcedDof = 2*(nelx+1)*(nely+1)-nely; % y force

63 elseif (problem == 2) % MBB beam

64 fixeddofs = 1:2*(nely+1); % left edge

65 forcedDof = 2*(nelx+1)*(nely+1)-2*nely; % y force

66 end

67 K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));

68 F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);

69 [KE] = lk;

70 for elx = 1:nelx

71 for ely = 1:nely

72 n1 = (nely+1)*(elx-1)+ely;

73 n2 = (nely+1)* elx +ely;

74 edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]';

75 alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx);

76 K(edof,edof) = K(edof,edof) + alpha*KE;

77 end

78 end

79 F(forcedDof,1) = -1;

80 alldofs = 1:2*(nely+1)*(nelx+1);

81 freedofs = setdiff(alldofs,fixeddofs);

82 U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);

83 U(fixeddofs,:)= 0;

84 %%%

85 function [KE]=lk % element stiffness

86 E = 1.; nu = 0.3;

87 k=[1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

88 -1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

89 KE = E/(1-nu^2)*[k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

90 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

91 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

92 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

93 k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

94 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

95 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

96 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

97 %%%

98 function [T] = ComputeT(U,elemsIn,voidEps)

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

99 % Compute the topological sensitivity at the center of each element

100 [nely,nelx] = size(elemsIn);

101 gradN =0.5*[-1 1 1 -1;-1 -1 1 1]; % at center

102 E0 = 1;nu = 0.3;

103 D0 = 1/(1-nu^2)*[1 nu 0; nu 1 0;0 0 (1-nu)/2]; % plane stress

104 T(1:nely,1:nelx) = 0; % initialize to 0

105 for elx = 1:nelx

106 for ely = 1:nely

107 n1 = (nely+1)*(elx-1)+ely;

108 n2 = (nely+1)* elx +ely;

109 edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]';

110 uGrad = gradN*U(edof(1:2:end));

111 vGrad = gradN*U(edof(2:2:end));

112 strains = [uGrad(1); vGrad(2); (uGrad(2)+vGrad(1))];

113 alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx);

114 E = E0*alpha;

115 stresses = D0*E*strains;

116 stressTensor = [stresses(1) stresses(3); stresses(3) stresses(2)];

117 strainTensor = [strains(1) strains(3)/2; strains(3)/2 strains(2)];

118 if (elemsIn(ely,elx))

119 T(ely,elx) = 4/(1+nu)*sum(sum(stressTensor.*strainTensor))- ...

120 (1-3*nu)/(1-nu^2)*trace(stressTensor)*trace(strainTensor);

121 else

122 T(ely,elx) = 4/(3-nu)*sum(sum(stressTensor.*strainTensor))+...

123 (1-3*nu)/((1+nu)*(3-nu))*trace(stressTensor)*trace(strainTensor);

124 end

125 end

126 end

127 %%%

128 function [J]=computeCompliance(nelx,nely,elemsIn,voidEps,U)

129 % Compute the compliance of the entire mesh

130 [KE] = lk;J = 0;

131 for elx = 1:nelx

132 for ely = 1:nely

133 n1 = (nely+1)*(elx-1)+ely;

134 n2 = (nely+1)* elx +ely;

135 edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]';

136 alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx);

137 Ue = U(edof);

138 J = J + alpha*Ue'*KE*Ue;

139 end

140 end

141 %%%

142 function value = findContourValueWithVolumeFraction(field,volfrac)

143 % Find the level-set value such that the contour has given vol fraction

144 % The code computes the level-set value with desired external volume

145 [nely,nelx] = size(field);

146 externalVolumeDesired = nelx*nely*(1-volfrac);

147 field = -field; % reverse the sign to compute external volume

148 valMax = 0; valMin = min(field(:));

149 bufferedField = valMin*ones(nely+2,nelx+2);% Add buffer to get closed contours

150 bufferedField(2:end-1,2:end-1) = field;

151 iterMax = 50;iter = 1;

152 while (1) % A binary search is used to find the optimal level-set value

153 valMid = (valMax+valMin)/2;

Structural and Multidisciplinary Optimization. Accepted: June 10, DOI: 10.1007/s00158-010-0534-6

154 extVol = computeAreaInContour(bufferedField,valMid);

155 err = abs(extVol-externalVolumeDesired)/(extVol);

156 if (err < 0.001) || (iter > iterMax)

157 value = -valMid; % change the sign before return

158 return;

159 end

160 if (extVol > externalVolumeDesired)

161 valMin = valMid;

162 else

163 valMax = valMid;

164 end

165 iter = iter+1;

166 end

167 %%

168 function area = computeAreaInContour(bufferedField,value)

169 % For a given level-set value, compute the area enclosed

170 % It is assumed that the field has been buffered; see code above

171 [cntr,h] = contours(bufferedField,[value value]);

172 indices = find(cntr(1,:) == value);area = 0;

173 for i = 1:numel(indices)

174 startCol = indices(i)+1;

175 endCol = startCol+ cntr(2,indices(i))-1;

176 xPoly = cntr(1,startCol:endCol);

177 yPoly = cntr(2,startCol:endCol);

178 area = area + polyarea(xPoly,yPoly);

179 end

180 %%%

181 function [isValid,isParetoOptimal] = analyzeTopology(T,elemsIn)

182 % Check if the Topological field is valid and/or pareto-optimal

183 T_SMin = min(T(elemsIn==1)); % Min of topological field inside the domain

184 T_AMax = max(T(elemsIn==0)); % Max of topological field outside the domain

185 T_AMin = min(T(elemsIn==0)); % Min of topological field outside the domain

186 isValid = 0; isParetoOptimal = 0;

187 if (T_SMin > 0.8*T_AMax) % See paper

188 isValid = 1;

189 end

190 if (T_AMin+T_SMin >= 0) % See paper

191 isParetoOptimal = 1;

192 end

193 %%%

194 function plotContour(T,value,fig)

195 %Use Matlab's built-in contour command to draw the optimal topology.

196 [nely,nelx] = size(T);

197 figure(fig);clf;fill([1 nelx nelx 1],[1 1 nely nely],'b'); hold on;

198 [cntr,h] =contourf(-T,[-value -value]); % the second argument is essential

199 axis('equal'); axis tight;axis off;

