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Abstract  

 The paper ‘A 99-line topology optimization code written 
in Matlab’ by Sigmund (Structural and Multidisciplinary 
Optimization, 2001, 21) demonstrated that SIMP-based 
topology optimization can be easily implemented in less 
than hundred lines of Matlab code. The published method 
and code has been used even since by numerous researchers 
to advance the field of topology optimization. 

 Inspired by the above paper, we demonstrate here that, by 
exploiting the notion of topological-sensitivity (an alternate 
to SIMP), one can generate pareto-optimal topologies in 
about twice the number of lines of Matlab code. In other 
words, optimal topologies for various volume fractions can 
be generated in a highly efficient manner, by directly tracing 
the pareto-optimal curve.  

1. INTRODUCTION1 

 Topology optimization is now a well established field. 
Indeed, numerous topology optimization methods such as 
homogenization [1], SIMP [2-4] and level-set [5-7], now 
exist. If a well-defined objective can be articulated, such 
methods can systematically generate insightful designs for 
complex engineering problems. 

 In this paper, we discuss a new and robust topology 
optimization method for multi-objective problems, based on 
the concept of topological sensitivity  [8-16]. A salient 
feature of the proposed method is that, for compliance 
problems, one can trace the pareto-optimal frontier (see 
Figure 1) in a computationally efficient manner. In other 
words, the method can find pareto-optimal topologies [17] 
for various volume fractions with far fewer finite element 
analysis than classic SIMP methods. 

 

Figure 1: Pareto-optimal points, and pareto-frontier. 

 The remainder of the paper is organized as follows. In 
Section 2, multi-objective topology optimization is briefly 
reviewed. In Section 3, we introduce the notion of local 
pareto-optimality, review topological sensitivity, and finally 
establish fundamental results on pareto-optimal designs, 
and an associated algorithm. Then, in Section 4, the Matlab 
code (see Appendix) for generating pareto-optimal designs 
is explained. In Section 5, numerical results are presented, 
followed by conclusions and open issues in Section 6.   

2. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION 

                                                        
1 A preliminary version of this work will be presented at the 2010 
ASME IDETC/CIE conference in Montreal, Canada. 

 There is significant amount of literature on topology 
optimization (for example, see review papers [18-21]), and 
multi-objective optimization [17, 22-25]. We focus here on 
the intersection of the two disciplines, specifically on 
topology optimization problems of the type: 

 { },
D

Min J
Ω⊂

Ω  (2.1) 

where (see Figure 2, for example): 

 

:  Compliance

:  Geometry/topology to be computed

:  Region within which the geometry must lie

J

D

Ω  (2.2) 

It is implicitly assumed that, for any structure DΩ ⊆ , the 

displacement must satisfy the elasticity equation [26]. 

 

Figure 2: A structural problem on the domain D . 

 The objective is to find pareto-optimal topologies [17] for 
Equation (2.1). In the present context, a topology Ω  is 

‘pareto-optimal’ if no other topology ′Ω  exists with smaller 
compliance and identical volume. 

2.1 Review of Methods 

 One approach to solving Equation (2.1) is to transform it 
into a series of single-objective optimization problems: 

 
0

D
Min J

v

Ω⊂

Ω =
 (2.3) 

where the volume is fixed at some desired value, and 
Equation (2.3) is solved to yield an optimal topology. Then, 
the volume desired is modified, and a fresh optimization 
problem is solved. This strategy is easy to implement, but 
can be computationally prohibitive since each ‘run’ of 
topology optimization entails numerous finite element 
analysis (FEA), and is therefore expensive.   

 An alternate approach to solving Equation (2.1) is 
through weighted optimization where the problem is 
transformed as follows: 

 
1 2

D
Minw J w
Ω⊂

+ Ω  (2.4) 

where the weights are prescribed a priori. By appropriately 
choosing the weights, a set of pareto-optimal designs may 
be obtained. This method has two inherent limitations: (1) 
not all pareto-optimal designs can be obtained via suitable 
weighting, and (2) finding suitable weights is non-trivial 
[23, 24, 27]. 
 A variation is the ‘compromise formulation’ wherein the 
weights are supplemented by min and max for each 
objective function [28]. Yet another variation is the physical 
programming method where other aspects of the objectives, 
for example: the range within which it must lie, etc, are 
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taken into account in the formulation [29]. Further, for 
specific applications, example: compliant mechanisms, 
other weighted-optimization methods have also been 
successfully implemented [30].  
 However, the most successful methods today for multi-
objective optimization are based on the non-dominated 
evolutionary or genetic algorithms [22, 31-33].  
 The underlying principle behind this class of methods 
(there are numerous variations) is as follows. First, one 
generates a population of designs. Then, through stochastic 
methods, typically via genetic coding and mutation, some of 
the designs are modified. Non-pareto-designs are then 
eliminated, and the cycle is repeated. Specific examples of 
such methods for multi-objective topology optimization are 
reviewed below. 
 In [31], the authors deal with multi-objective topology 
optimum design, where the two objectives are minimization 
of volume and maximum displacement under given loading. 
Multi-objective evolutionary algorithms are used with 
Voronoi diagrams serving as a geometric representation.  
 In [34], the two objectives considered in topology 
optimization are the minimization of compliance, and 
maximization of the first eigen-value, with the amount of 
material to be used serving as a constraint. An additional 
parameter of penalty-timing is also considered. 
 While many of the methods are capable of generating 
pareto-optimal topologies, a common drawback is that they 
require numerous FEA-runs, and are therefore 
computationally prohibitive. 

3. PROPOSED METHOD 

 The objective here is to develop a simple and efficient 
method to directly trace the pareto-frontier for the two-
objective topology optimization problem in Equation (2.1).  
 The proposed method rests on: (1) the notion of local 
pareto-optimality discussed in Section 3.1, (2) topological 
sensitivity, reviewed in Section 3.2, and (3) pareto-
optimality criteria stated and proved in Section 3.3. The 
method has been inspired by the pioneering work reported 
in [35, 36]. 

3.1 Local Pareto-Optimality  

 Since our objective is to trace the pareto-optimal curve, 
i.e., to move from pareto-optimal point to the next, we 
define in this Section the notion of “local pareto-optimality”, 
by first defining the distance between 2 topologies.   

Definition 1:  Topologies Ω  and 'Ω  are utmost δ -apart if 

their symmetric volume difference is less than or equal to δ : 

 ( , ') ( ') ( ' )V δ∆ Ω Ω = Ω −Ω + Ω −Ω ≤  (3.1) 

 ♦ 

For example, consider the topology in Figure 3. 

   
Figure 3: A given topology Ω . 

 Figure 4 illustrates topologies that are δ -apart from 

Figure 3, where δ  denotes the volume of a small disc, 

shown in Figure 4. Thus, nearby-topologies can be 
constructed by: (a) subtracting or adding a single volume of 

δ , (b) subtracting or adding 2 volumes of / 2δ , (c) 

subtracting and adding a volume of / 2δ , (d) 

subtracting/adding multiple volumes of / Nδ , such that 

Equation (3.1) is satisfied. 

 
Figure 4: Topologies ′Ω  that areδ -apart from Figure 3c. 

 With this notion of nearby-topologies, we now define 
‘local’ pareto-optimality as follows. 

Definition 2:  A topology Ω  is said to be locally pareto-
optimal if it is pareto-optimal with respect to all topologies 

that are within a distance δ  apart from it, where δ  is 

sufficiently small. ♦ 

 This definition plays a crucial role in determining if a 
particular topology is pareto-optimal. In the next section, 
we provide necessary and sufficient conditions for a 
topology to be locally pareto-optimal. But, first we review 
the second concept of topological sensitivity (a.k.a. 
topological derivative).  

3.2. Topological Sensitivity: A Review 

 The notion of topological derivative has its roots in the 
seminal paper by Eschenauer, et. al. [15]; this concept has 
been later explored by numerous authors, for example in [8-
15, 35]. The classic topological sensitivity deals with the 
sensitivity of field problems to subtraction of infinitesimal 
but arbitrary shaped features [13]. However, in this paper, 
we shall restrict ourselves to subtraction of discs in 2-D, 
spheres in 3-D. Further, we assume that the discs/spheres 
lie in the interior of the domain (see [37, 38] for a treatment 
of boundary insertion/perturbation). For such shapes, 
topological sensitivity captures the first order impact of 
inserting a small circular hole within a domain on various 
quantities of interest [8-14, 39].  

 For the compliance J , the topological sensitivity field, for 

a 2-D plane-stress problem, is given by [40]: 

 
2

4 1 3
( ) : ( ) ( )

1 1

S p tr tr
ν

σ ε σ ε
ν ν

−
= −

+ −
T �  (3.2) 

It states that, once the stress and strain are determined for a 
given structural problem, the change in compliance due to 

insertion of a hole of area δ  at any point p  is given by: 

 ( ) ( )
S

J p oδ δ∆ = +T  (3.3) 

where, by definition: 

 
0

( )
lim 0
o

δ

δ
δ→

→  (3.4) 

In parallel, one can also consider the case of material 
addition and its impact on the compliance. In particular, let 
the region D −Ω  be modeled using a soft-material 1Eε � .  
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 Then, one can show that the topological sensitivity, for a 
2-D plane-stress problem, with respect to addition is given 
by [41]: 

 
4 1 3

( ) : ( ) ( )
3 (1 )(3 )

A q tr tr
ν

σ ε σ ε
ν ν ν

−
= − −

− + −
T �  (3.5) 

It captures the first order impact of adding a small circular 
material in the soft-region on the compliance. Note that 

stresses & strains are related through E  in Equation (3.2), 
and through Eε  in Equation (3.5). 

 The two fields &S A
T T  are, in general, discontinuous at 

the boundary of Ω . For convenience, one can combine the 
two into a single (discontinuous) topological sensitivity 
field T over the entire domain per: 

 
( ) if 

( )
( ) if 

 ∈Ω
= 

− ∈ −Ω

S

A

r r
r

r r D

T
T

T
 (3.6) 

For compliance problems, since subtracting (or adding) 
material never decreases (or increases) the compliance: 

 ( ) 0 ( ), ,≥ ≥ ∀ ∈Ω ∀ ∈ −ΩS A
p q p q DT T  (3.7) 

it follows that  0≥T � . 

3.3 Pareto-Optimality Criteria 

 Consider now the multi-objective problem stated earlier 
in Equation (2.1). Various pareto-optimal solutions exist for 

Ω , for the example illustrated in Figure 2. For example, the 

special case of DΩ =  is illustrated in Figure 5, i.e., where 
the structure occupies the entire space provided. This is a 
pareto-optimal design since it is impossible to find a 
structure of lower compliance, and identical volume. 

 

39; 1.0J v= =  

Figure 5: A pareto-optimal topology of volume 1.  

 On the other hand, consider the structures illustrated in 
Figure 6; the compliances and volumes are also provided. 
Are these topologies pareto-optimal with respect to the 
objectives in Equation (2.1)? This question cannot be 
answered today without either computing the pareto-
optimal frontier or searching for ‘better’ designs.  

   
(a) 162; 0.3;J v= =  (b) 66; 0.5;J v= = (c) 56; 0.65;J v= =  

Figure 6: Are these topologies pareto-optimal with respect 
to Equation (2.1)?  

 The lack of an ‘inherent’ test to determine pareto-
optimality of topologies is a serious short-coming. We now 
address this through an important claim on local pareto-
optimality by combining the definitions of the above two 
Sections. 

Lemma 1: A necessary condition for a domain Ω  to be 
locally pareto-optimal with respect to Equation (2.1)  is that 
its topological sensitivity fields must satisfy the inequality: 

 min( ) min( ) 0
S A+ ≥T T  (3.8) 

Proof: Let 'Ω  be a nearby topology with identical volume 

at a distance of δ  from it, i.e., 'Ω is constructed from Ω  by 

subtracting M discs of areas 0S

i
δ > , and adding N discs of 

areas 0A

i
δ > , i.e., 

 
1 1

' \ ( ) ( )S A
i j

M N

i j

i j

B p B q
δ δ

= =

Ω = Ω ∪∑ ∑  (3.9) 

such that: 

 
1 1

/ 2δ δ δ
= =

= =∑ ∑
M N

S A

i j

i j

 (3.10) 

Note that the change in compliance is: 

 
1 1

( ) ( ) ( )δ δ δ
= =

∆ = + +∑ ∑
M N

S S A A

i i j j

i j

J p q oT T  (3.11) 

 If Ω  is locally pareto-optimal, 'Ω  cannot have a lower 
compliance implying: 

1 1

( ) ( ) ( ) 0, , , ,δ δ δ δ δ
= =

∆ = + + ≥ ∀∑ ∑
M N

S S A A S A

i i j j i j i j

i j

J p q o p qT T  (3.12) 

Considering Equation (3.7), as a particular choice subtract 

material of volume / 2δ  at a location where S
T  takes a 

minimum, and add material of volume / 2δ  at a location 

where A
T  also takes a minimum, i.e., 

 min( ) / 2 min( ) / 2 ( ) 0S AJ oδ δ δ∆ = + + ≥T T  (3.13) 

In the limit of 0δ → , from Equation (3.4) 

 min( ) min( ) 0S A+ ≥T T  (3.14) 

♦  

 Thus, to determine if a topology Ω  satisfies the necessary 
condition to be locally pareto-optimal, one must: 

1. Solve the elasticity problem for , &u ε σ  over D  

2. Compute the topological sensitivity fields per Equations 
(3.2) and (3.5). 

3. Check if Equation (3.8) is satisfied. 

Indeed, from the above inherent test, one can easily 
determine that the topologies in Figure 6a and Figure 6c are 
not locally pareto-optimal. However, the topology in Figure 
6b indeed satisfies the necessary condition for local pareto-
optimality. In theory, second order checks are necessary to 
ensure local minimum. However, in practice, we found that 
the algorithms based on the above Lemma, trace the local 
minima. 

 From the above Lemma we have the following Corollary. 

Corollary: If Ω  is pareto-optimal, there exists a scalar l  

such that 

 ( ) ( ), ,≥ ≥ − ∀ ∈Ω ∀ ∈ −ΩS Ap l q p q DT T  (3.15) 

Proof: From Equation (3.8), we have: 

 min( ) min( ) max( )≥ − = −S A A
T T T  (3.16) 

i.e., 

 
( ) min( ) max( ) ( )

,

≥ ≥ − ≥ −

∀ ∈Ω ∀ ∈ −Ω

S S A Ap q

p q D

T T T T
 (3.17) 

Thus Equation (3.15) follows. 
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♦  

Without a loss of generality, if we assume min( )> S
l T , then 

it follows from the above corollary and Equation (3.6) that a 
pareto-optimal domain satisfies the inverse relationship: 

 { }| ( )Ω = >r r lT  (3.18) 

This inverse relationship will be exploited in the algorithm 
below. 

 Observe that the scalar l  in Equation (3.15) is not 

uniquely defined since the two fields & −S A
T T  are not 

necessarily continuous across the boundary ∂Ω .  

 However, in the algorithm below, we apply a filter on the 
topological sensitivity fields in order to eliminate the 
‘checker-field’ effect (similar to the filtering applied on the 
density in SIMP); this renders the two topological fields to 
be continuous. We then relax the constraint in Equation 
(3.15), and impose the volume constraint: 

 Ω = v  (3.19) 

In other words, the scalar l  is determined such that the 

filtered topological sensitivity field *
T  satisfies 

 { }*| ( ) > =r r l vT  (3.20) 

The scalar l  is now uniquely determined with the following 

exception: if there are two topologies that are equally 
optimal, then the algorithm may oscillate. Thus, in practice, 
one must detect and break such oscillation cycles. These 
implementation details are discussed further under Table 2 
in Section 4. 

3.4 Pareto-Frontier Tracing Algorithm 

 We now apply the above set of results to arrive at an 
algorithm for tracing pareto-optimal topologies. In 

particular, let Ω  be a locally pareto-optimal topology. The 
objective is to compute a nearby pareto-optimal topology 
′Ω  whose volume is less than that of Ω  by v∆ , i.e., 

 v′Ω = Ω − ∆  (3.21) 

We rely on a fixed-iteration scheme similar to the ones 
discussed in [35, 36] in that: (1) given a domain Ω  one can 

compute its topological field T  via Equation (3.6), and (2) 
given a valid topological field T , one can compute the 
corresponding Ω  via Equation (3.18). Further, by imposing 
Equation (3.8) for local pareto-optimality, we arrive at the 
following algorithm. 

( )
{ }
{ }

min ma

: A pareto-optimal topology ,  step size  

: A near-by pareto-optimal topology 

         such that :

Do 

     , ( )

       | ( )

     | ( )

While (

Ω ∆

′Ω

′Ω = Ω − ∆

′← Ω − ∆

′Ω ←Ω

′≡ ← Ω

′← > =

′Ω ← >

<

S A

S

Given v

Find

v

v v

l r r l v

r r l

T T T T�

T

T

T T
x min min
) | ( 0)+ <A S A
T T

 

Algorithm 1: Finding a pareto-optimal topology with 

volume decrement of v∆ . 

 The existence of the parameter l in the above algorithm 

hinges on the existence of a pareto-optimal domain ′Ω  

satisfying Equation (3.21). If ′Ω  exists, then its topological 
sensitivity pair exists and can be computed. Since this pair 

satisfies Equation (3.7), there exists an l  satisfying: 

 S Al> >T T  (3.22) 

Existence does not imply uniqueness or that the algorithm 

will converge to the correct value of l ! Indeed, if a very 

large step-size is taken for v∆ , the algorithm may never 

converge. In practice, 0.1v∆ ≤  is recommended. 

 To further optimize the step-size v∆ , one can estimate 

the change in compliance at each step. Further, since the 

DΩ =  is pareto-optimal, we have the following algorithm to 
trace the pareto-optimal curve. 

( )

max max

( )

( )

( ) ( ) ( ) ( )

( ) ( )

,

( )

max max ,

( 1) ( )
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Do 
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     min( , / )

     Algorithm-1( ,

i
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i i S i A i

i i S

v

i

v
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Find J v

i

D

v D

J

v v J J
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∆ ∆

←

Ω←

←

≡ ← Ω

← −

∆ ← ∆ ∆

Ω← Ω ∆
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T

( 1) ( )

( )

)

     

     1

While ( 0)

i i

i

v v v

i i

v

+ ← − ∆

← +

>

 

Algorithm 2: Tracing the pareto-optimal curve. 

 The strength and weakness of the proposed algorithm is 
that it moves from one local minimum to the next closest 
local minimum (with a new set of volume constraints) on 
the pareto-optimal curve. By exploiting the closeness of 
locally pareto-optimal solutions (as defined in the paper), 
the computational expense of pareto-tracing is reduced 
dramatically, as demonstrated via numerical experiments. 
The short-coming is that a ‘far away’ and alternate pareto-
optimal solution cannot be detected via the proposed 
method. 

4. MATLAB CODE 

 For convenience, the Matlab code for the above algorithm 
is listed in the Appendix; it can also be downloaded from the 
Matlab file exchange website (www.mathworks.com/ 
matlabcentral/fileexchange/).  The finite element 
assumptions, syntax and conventions closely follow those of 
Sigmund [4]. The input parameters are summarized in 
Table 1 below. The user can run the code with the default 
parameters via the Matlab call ParetoOptimalTracing; 

Table 1: Description of input parameters 
 Description Default 
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nely The number of quad elements 
in the vertical direction. 

30 

nely The number of quad elements 
in the horizontal direction. 

60 

desVolF
rac 

The final volume fraction 
desired (0.1 to 1.0). 

0.5 

problem Choose between the two 
topology optimization problems 
(see experiments below). 
Additional problems can be 
modeled via appropriate 
boundary conditions [4]. 

1 

volDecr
Max 

The maximum volume 

decrement v∆  allowed during 

pareto-tracing. 

0.05 

JIncMac The maximum compliance 

decrement J∆  allowed during 

pareto-tracing. 

3.0 

filterR
adius 

This is used for smoothening 
the topological sensitivity field, 
similar to the use of filters in 
SIMP [4]. 

0.8 

 A brief explanation of the Matlab code is given in the 
following table. The reader is also encouraged to study the 
conventions in [4]. 

Table 2: Description of the Matlab code. 
Lines Description 

1-16 Function call with default parameters 

17-26 We carry out a FEA for the full domain, and 
compute the filtered topological sensitivity 
field. Gaussian filters work the best; other 
filters may however be used. 

27-31 Check if the final volume fraction has been 
reached; if not, decrement volume fraction.  

32 Terminate after 10 fixed-point iterations to 
avoid oscillation/ cycles. In almost all 
experiments, the iteration converged in 
6~8 iterations. 

34-37 If the current topology is pareto-optimal, 
terminate fixed-point iteration. 

39 Compute the contour value of a ‘nearby’ 
topology with desired volume. 

40-42 Eliminate quad elements that do not lie 
within the above topology. 

43-47 Carry out a FEA over current topology; also 
compute filtered topological sensitivity. 

48 After a pareto-optimal topology has been 
determined, compute its compliance. 

49-52 Extract optimal topology and plot. 

53-54 Determine the next volume decrement. 

56-57 Final plot of pareto-optimal curve. 

58-97 FEA code; see [4].  

98-127 A function to compute the topological 
sensitivity fields for elements inside and 
outside; see Equations (3.2) and (3.5). 

128-141 Compliance computation; see [4]. 

142-166 Given a pair of topological sensitivity fields, 
and a desired volume fraction, compute the 
appropriate level-set value. A binary search 
is used to find the level-set value. Extra 
rows and columns are added around the 
field to obtain closed-contours. 

167-179 For a given buffered-field (see above), and 
a level-set value, find the area enclosed. 

180-192 Implementation of Equations (3.7) & (3.8) 

193-199 A function for plotting the contour / 
topology. 

5. NUMERICAL EXPERIMENTS 

 In this Section, we illustrate the above algorithm 
through numerical experiments, using the default 
parameters, unless otherwise stated. For all experiments, 

the domain D  is discretized into (60,30) linear quad 
elements.  

 For SIMP, we use the Matlab code described in [4] with 
the following parameters: 

• For each volume fraction v , we determine the optimal 

topology by minimizing compliance (i.e., single 
objective minimization). 

• We use a filtering radius of 1.5 to smoothen the 
sensitivity field and use a penalty of 3.0 for density.  

• The termination criteria is when the density change is 
less than 0.01 [4]. 

In addition, to trace the pareto-optimal curve via SIMP, we 
use two strategies: 

1. SIMP-restart: Here, for each volume fraction, the 
density is initialized to a uniform density of specified 
volume fraction. 

2. SIMP-continuous: Here, for each volume fraction, 
the density is initialized to the termination density of 
optimal topology of the previous volume fraction. 

In the proposed method and the two strategies of SIMP, the 
most dominating cost is finite element analysis (FEA). 
Therefore, in the experiments below, we note the number of 
FEA runs required to reach an optimal topology, for a given 
volume fraction, via the proposed algorithm, and via single-
objective SIMP-restart & SIMP-continuous.  
5.1 Problem-1 

 The first set of experiments is on the classic cantilevered 

beam-problem posed below. We assume that Ω  must lie 

within a space D , illustrated in Figure 7 of unit volume, and 
dimensions as shown. The structure Ω  is to be fixed on one 

edge, and must carry a unit-load F  on the other end as 

illustrated; the material properties are E = 1, and 0.3ν = .  

 

Figure 7: A cantilevered beam-problem 

 The table below summarizes the compliances for various 
volume fractions. For each volume fraction, we provide the 
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compliance as predicted by the proposed method, and that 
from SIMP-restart (SIMP-continuous yielded almost 
identical result, and are therefore not included). There are 
minor differences between the topologies generated by the 
two methods, but the compliances are almost identical, 
confirming that we have achieved pareto-optimality.  

Table 3: Optimal topologies and compliances for Figure 7. 
 Proposed Method SIMP (restart 

and continuous) 

0.9v =  

 

J=40.8 

 

J=40.64 

0.8v =  

 

J=44 

 

J=44 

0.7v =  

 

J=48.96 
 

J=48.98 

0.6v =  

 

J=55.3 

 

J=56.1 

0.5v =  

 

J=68 

 

J=66.3 

 

 The figure below captures the number of cumulative FEA 
runs (the most dominating cost) for the three strategies, as a 
function of the volume fraction removed. 

 

Figure 8: Number of cumulative FEA runs as a function of 
the volume fraction removed. 

 Observe that the number of FEA runs to achieve a given 
volume fraction for the proposed method is significantly 
smaller than that of either SIMP strategies. Thus, one can 
generate the entire set of pareto-optimal topologies with 62 

FEA runs as illustrated, SIMP-restart takes 628 FEA runs, 
and SIMP-continuous takes 353 runs. 

 The figure below illustrates the pareto-optimal curve as 
generated by the proposed method. 

 

Figure 9: The pareto-optimal curve for the cantilevered 
beam problem. 

 We will now vary some of the parameters and study their 
impact. For example, the figure below compares the pareto-
optimal curve for various mesh densities, namely (40,20), 
(60,30) (default), and (80,40); all other parameters being 
identical to the default parameters. Not surprisingly, finer 
density meshes yield lower pareto-optimal curves, and 
topologies with more ‘holes’.  

 

Figure 10: The pareto-optimal curves for the cantilevered 
beam problem for various mesh sizes. 

 Next we consider three volume step-sizes 0.025v∆ = , 

0.05v∆ =  (default), and 0.025v∆ = , and compare the 

pareto-optimal curves; all other parameters being identical. 
Since the curves in Figure 11 are almost identical, we have 
not identified them; the topologies were also identical. 

 

Figure 11: The pareto-optimal curves for the cantilevered 
beam problem for various volume step-sizes. 

 Finally, the pareto-optimal curve was found to be 
relatively insensitive to the filter radius (ranging from 0.5 to 
2.0). But, for lower filter radius, topologies with larger 
number of holes were generated, as expected. 
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5.2 Problem-2 

 The next set of experiments is on the beam problem 
posed below with material parameters, etc. as before. 

 

Figure 12: Problem-2 

The table below compares the results from the proposed 
method and SIMP-restart for various volume fractions. 
Once again, there are minor differences between the 
topologies generated by the two methods, but the 
compliances are almost identical, confirming that we have 
achieved pareto-optimality. 

Table 4: Optimal topologies and compliances. 
 Proposed Method SIMP (restart 

and continuous) 

0.9v =  

 

J=46.33 

 

J=46.22 

0.8v =  

 

J=49.8 

 

J=49.6 

0.7v =  

 

J=54.3 

 

J=54.8 

0.6v =  

 

J=61.77 

 

J=62.2 

0.5v =  

 

J=73.13 

 

J=73.1 

 

 The figure below captures the number of cumulative FEA 
runs (the most dominating cost) for the three strategies, as a 
function of the volume fraction removed. 

 

Figure 13: Number of cumulative FEA runs as a function of 
the volume fraction removed. 

 Observe that, once again, the number of FEA runs to 
achieve a given volume fraction for the proposed method is 
significantly smaller than that of either SIMP strategies.  

 One can generate the entire set of pareto-optimal 
topologies with 75 FEA runs via the proposed method, while 
SIMP-continuous requires 250 FEA runs. The figure below 
illustrates the pareto-optimal curve as generated by the 
proposed method. 

 

Figure 14: The pareto-optimal curve. 

6. CONCLUSIONS 

 The three most significant contributions of the paper are: 
(1) a theoretical framework for determining if a topology 
satisfies the necessary condition for local pareto-optimality, 
(2) an efficient algorithm for tracing pareto-optimal curves 
for compliance-related objectives, and (3) a compact Matlab 
code for generating pareto-optimal topologies. 

 Future work will focus on: (a) non-compliance objectives 
since the topological sensitivity concept is well defined for a 
large class of problems, (b) further improving the efficiency 
of the proposed algorithm, and (c) considering arbitrary 
shaped features (rather than uniform discs and spheres) for 
the topological sensitivity field. 
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Appendix: Matlab Code 
 

1     function ParetoOptimalTracing(nelx,nely,desVolFrac,problem,volDecrMax,JIncMax,filterRadius) 

2     % Generate pareto-optimal topologies via fixed point iteration 

3     % Author: Krishnan Suresh; suresh@engr.wisc.edu 

4     % Reference: "A 199-line Matlab Code for Pareto-Optimal Tracing in Topology Optimization",  

5     %             K. Suresh, Vol X, pp xy, Structural and Multidisciplinary Optimization, 

6     % Acknowledgements: "A 99 line topology optimization code written in Matlab"             

7     %                   by Ole Sigmund (2001), Structural and Multidisciplinary Optimization,  

8     %                   Vol 21, pp. 120--127. 

9     if (nargin == 0) % default values 

10        nelx = 60;nely = 30; % The grid size for topology optimization 

11        desVolFrac = 0.5; % The final volume fraction desired 

12        problem = 1; % 1 or 2 for cantilevered beam problems 

13        volDecrMax = 0.05; % step-size for pareto-tracing 

14        JIncMax = 3; % For steep change in pareto-curve, use additional constraint 

15        filterRadius = 0.8; % Use for smoothening the topological sensitivity field 

16    end 

17    voidEps = 1e-4; % Relative Young's Modulus of void region  

18    filter = fspecial('gaussian', [3 3],filterRadius); % smoothen topological sensitivity  field 

19    totalIter = 0; 

20    elemsIn(1:nely,1:nelx) = 1; % intialize the domain  

21    U = FE(nelx,nely,elemsIn,voidEps,problem); % Solve FEA problem 

22    T = ComputeT(U,elemsIn,voidEps); % Compute topological sensitivity 

23    T = filter2(filter,T); % smoothen the field 

24    J(1) = computeCompliance(nelx,nely,elemsIn,voidEps,U); % compute & store compliance 

25    volIndex = 1;volFractions(1) = 1; volfrac = 1; % initialization 

26    volDecrement = volDecrMax; % current decrement of volume fraction 

27    while (volfrac > desVolFrac) 

28        volfrac = volfrac-volDecrement; % move to the next volume fraction 

29        volIndex = volIndex+1; 

30        volFractions(volIndex) = volfrac; % store the volume fraction 

31        iter = 0; 

32        while (iter < 10) % to avoid cycles; typically 10 iterations is sufficient   

33            totalIter= totalIter+1;  

34            [isValid,isParetoOptimal] = analyzeTopology(T,elemsIn);  

35            if ((iter > 0)&&(isValid)&&(isParetoOptimal)) % done with current vol  

36                break 

37            end 

38            % Find the level-set value such that the contour has given vol fraction 

39            value = findContourValueWithVolumeFraction(T,volfrac); 

40            [index] = find(T < value); % eliminate all elements less than this value 

41            elemsIn(1:nely,1:nelx) = 1; % start with the full domain 

42            elemsIn(ind2sub(size(T),index)) = 0; % remove elements 

43            U = FE(nelx,nely,elemsIn,voidEps,problem); % FEA 
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44            T = ComputeT(U,elemsIn,voidEps); % Topological Sensitivity 

45            T = filter2(filter,T); % Smoothen the field 

46            iter= iter+1; 

47        end 

48        J(volIndex) = computeCompliance(nelx,nely,elemsIn,voidEps,U); 

49        value = findContourValueWithVolumeFraction(T,volfrac); % as above 

50        plotContour(T,value,figure(1)); 

51        title(['v=' num2str(volfrac) '; J = ' num2str(J(volIndex)) '; #FEA = ' num2str(totalIter)]);  

52        pause(0.001); 

53        dJ =  J(volIndex)- J(volIndex-1); 

54        volDecrement = max(volDecrement/5,min(volDecrement,JIncMax*volDecrement/dJ)); 

55    end 

56    figure(2); plot(volFractions,J,volFractions,J,'*'); 

57    xlabel('Volume'); ylabel('Compliance'); grid on; 

58    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

59    function [U]=FE(nelx,nely,elemsIn,voidEps,problem) 

60    if (problem == 1) % Cantilevered beam;  

61        fixeddofs = 1:2*(nely+1); % left edge 

62        forcedDof = 2*(nelx+1)*(nely+1)-nely; % y force 

63    elseif (problem == 2) % MBB beam 

64        fixeddofs = 1:2*(nely+1); % left edge 

65        forcedDof = 2*(nelx+1)*(nely+1)-2*nely; % y force 

66    end 

67    K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1)); 

68    F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1); 

69    [KE] = lk; 

70    for elx = 1:nelx 

71      for ely = 1:nely 

72        n1 = (nely+1)*(elx-1)+ely;  

73        n2 = (nely+1)* elx   +ely; 

74        edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]'; 

75        alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx); 

76        K(edof,edof) = K(edof,edof) + alpha*KE;  

77      end 

78    end 

79    F(forcedDof,1) = -1; 

80    alldofs     = 1:2*(nely+1)*(nelx+1); 

81    freedofs    = setdiff(alldofs,fixeddofs); 

82    U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);       

83    U(fixeddofs,:)= 0; 

84    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

85    function [KE]=lk % element stiffness 

86    E = 1.; nu = 0.3; 

87    k=[ 1/2-nu/6   1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...  

88       -1/4+nu/12 -1/8-nu/8  nu/6       1/8-3*nu/8]; 

89    KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) 

90                      k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3) 

91                      k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2) 

92                      k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5) 

93                      k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4) 

94                      k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7) 

95                      k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6) 

96                      k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)]; 

97    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               

98    function [T] = ComputeT(U,elemsIn,voidEps) 
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99    % Compute the topological sensitivity at the center of each element 

100   [nely,nelx] = size(elemsIn); 

101   gradN =0.5*[-1 1 1 -1;-1 -1 1 1]; % at center 

102   E0 = 1;nu = 0.3; 

103   D0 = 1/(1-nu^2)*[1 nu 0; nu 1 0;0 0 (1-nu)/2]; % plane stress 

104   T(1:nely,1:nelx) = 0; % initialize to 0 

105   for elx = 1:nelx 

106     for ely = 1:nely 

107       n1 = (nely+1)*(elx-1)+ely;  

108       n2 = (nely+1)* elx   +ely; 

109       edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]'; 

110       uGrad = gradN*U(edof(1:2:end)); 

111       vGrad = gradN*U(edof(2:2:end)); 

112       strains = [uGrad(1); vGrad(2); (uGrad(2)+vGrad(1)) ]; 

113       alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx); 

114       E = E0*alpha; 

115       stresses = D0*E*strains; 

116       stressTensor = [stresses(1) stresses(3); stresses(3) stresses(2)]; 

117       strainTensor = [strains(1) strains(3)/2; strains(3)/2 strains(2)];  

118       if (elemsIn(ely,elx)) 

119           T(ely,elx) = 4/(1+nu)*sum(sum(stressTensor.*strainTensor))- ... 

120            (1-3*nu)/(1-nu^2)*trace(stressTensor)*trace(strainTensor); 

121       else  

122           T(ely,elx) = 4/(3-nu)*sum(sum(stressTensor.*strainTensor))+... 

123             (1-3*nu)/((1+nu)*(3-nu))*trace(stressTensor)*trace(strainTensor); 

124       end 

125     end 

126   end 

127   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

128   function [J]=computeCompliance(nelx,nely,elemsIn,voidEps,U) 

129   % Compute the compliance of the entire mesh 

130   [KE] = lk;J = 0; 

131   for elx = 1:nelx 

132     for ely = 1:nely 

133       n1 = (nely+1)*(elx-1)+ely;  

134       n2 = (nely+1)* elx   +ely; 

135       edof = [2*n1-1 2*n1 2*n2-1 2*n2 2*n2+1 2*n2+2 2*n1+1 2*n1+2]'; 

136       alpha = (1-elemsIn(ely,elx))*voidEps + elemsIn(ely,elx); 

137       Ue = U(edof); 

138       J = J + alpha*Ue'*KE*Ue;  

139     end 

140   end 

141   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

142   function value = findContourValueWithVolumeFraction(field,volfrac) 

143    % Find the level-set value such that the contour has given vol fraction 

144    % The code computes the level-set value with desired external volume 

145   [nely,nelx] = size(field); 

146   externalVolumeDesired = nelx*nely*(1-volfrac); 

147   field = -field; % reverse the sign to compute external volume 

148   valMax = 0; valMin = min(field(:)); 

149   bufferedField = valMin*ones(nely+2,nelx+2);% Add buffer to get closed contours 

150   bufferedField(2:end-1,2:end-1) = field; 

151   iterMax = 50;iter = 1; 

152   while (1) % A binary search is used to find the optimal level-set value 

153       valMid = (valMax+valMin)/2; 
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154       extVol = computeAreaInContour(bufferedField,valMid); 

155       err = abs(extVol-externalVolumeDesired)/(extVol); 

156       if (err < 0.001) || (iter > iterMax) 

157           value = -valMid; % change the sign before return 

158           return; 

159       end 

160       if (extVol > externalVolumeDesired) 

161           valMin = valMid; 

162       else 

163           valMax = valMid; 

164       end 

165       iter = iter+1; 

166   end 

167   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

168   function area = computeAreaInContour(bufferedField,value) 

169   % For a given level-set value, compute the area enclosed 

170   % It is assumed that the field has been buffered; see code above 

171   [cntr,h] = contours(bufferedField,[value value]); 

172   indices = find(cntr(1,:) == value);area = 0; 

173   for i = 1:numel(indices) 

174       startCol = indices(i)+1; 

175       endCol = startCol+ cntr(2,indices(i))-1; 

176       xPoly = cntr(1,startCol:endCol); 

177       yPoly = cntr(2,startCol:endCol); 

178       area = area + polyarea(xPoly,yPoly); 

179   end 

180   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

181   function [isValid,isParetoOptimal] = analyzeTopology(T,elemsIn) 

182   % Check if the Topological field is valid and/or pareto-optimal 

183   T_SMin = min(T(elemsIn==1)); % Min of topological field inside the domain 

184   T_AMax = max(T(elemsIn==0)); % Max of topological field outside the domain 

185   T_AMin = min(T(elemsIn==0)); % Min of topological field outside the domain 

186   isValid = 0; isParetoOptimal = 0; 

187   if (T_SMin > 0.8*T_AMax) % See paper 

188       isValid = 1;  

189   end 

190   if (T_AMin+T_SMin >= 0) % See paper 

191       isParetoOptimal = 1;  

192   end 

193   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

194   function plotContour(T,value,fig) 

195   %Use Matlab's built-in contour command to draw the optimal topology. 

196   [nely,nelx] = size(T); 

197   figure(fig);clf;fill([1 nelx nelx 1],[1 1 nely nely],'b'); hold on; 

198   [cntr,h] =contourf(-T,[-value -value]); % the second argument is essential 

199   axis('equal'); axis tight;axis off; 


